Abstract The local microenvironment of a cancer cell plays important roles in tumor metastasis. Major components of this local niche are ion channels, integrin receptors, and the extracellular matrix. Glioma cells express a specific amiloride-sensitive and constitutively active non-selective cation channel composed of ASIC1, α- and gENaC subunits, members of the Deg/ENaC superfamily of non-voltage gated sodium channels. Inhibition of this channel is associated with reduced migration and proliferation of the glioma cell. As gliomas are highly invasive, we hypothesized that channel activity was engaging an intracellular signaling pathway regulating migration and proliferation by interacting with integrin β1. We have shown the physical proximity of the ASIC1 subunit and integrin β1 by co-immunoprecipitation in D54MG glioma cells. A functional interaction between these two proteins was demonstrated when we found that stable (shRNA) knock-down of integrin β1 attenuated the amiloride-sensitive current by 89±24% (n≥9; ±SD P<0.001). Furthermore, prolonged (24h) inhibition of this glioma channel by PcTX-1, a specific ASIC1 inhibitor, down-regulated integrin β1 expression (by 60% ± 12% (SD) n≥3 P<0.001). The surface expression of ASIC1 in glioma cells is also regulated by integrin β1. Using biotinylation, we found that stably knocking down integrin β1 inhibited the surface expression of ASIC1. In contrast, up-regulating membrane expression of integrin β1 by coating dishes with either fibronectin or vitronectin, increased the surface expression of ASIC1. This effect was not observed when dishes were coated with poly-L-lysine. We have previously shown that knockdown of ASIC1 reduced the phosphorylation level of ERK1/2, a key mediator of tumor cell proliferation and migration (Rooj et al. J. Biol. Chem. 287:4053, 2012). In the present study, phosphorylation of ERK1/2 was also reduced by knockdown of integrin β1 (by 58% ± 20% (SD) n≥3 P<0.001). Our data reveal a novel interaction between ASIC1 and integrin β1 in the regulation of the MAPK pathway that may form a mechanism by which changes in Na+ current can modulate cell proliferation and migration. Citation Format: Arun K. Rooj, Carmel M. McNicholas, Catherine M. Fuller. Physical and functional interactions between acid sensing ion channel 1 (ASIC1) and integrin β1 in glioma cells. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 1643. doi:10.1158/1538-7445.AM2013-1643
An inwardly rectifying, ATP-regulated K+ channel with a distinctive molecular architecture, ROMK1, was recently cloned from rat kidney. Using patch clamp techniques, we have investigated the regulation of ROMK1 with particular emphasis on phosphorylation/dephosphorylation processes. Spontaneous channel rundown occurred after excision of membrane patches into ATP-free bath solutions in the presence of Mg2+. Channel rundown was almost completely abolished after excision of patches into either Mg(2+)-free bathing solutions or after preincubation with the broad-spectrum phosphatase inhibitor, orthovanadate, in the presence of Mg2+. MgATP preincubation also inhibited channel rundown in a dose-dependent manner. In addition, the effect of the specific phosphatase inhibitors okadaic acid (1 microM) and calyculin A (1 microM) was also investigated. The presence of either okadaic acid or calyculin A failed to inhibit channel rundown. Taken together, these data suggest that rundown of ROMK1 involves a Mg(2+)-dependent dephosphorylation process. Channel activity was also partially restored after the addition of MgATP to the bath solution. Addition of exogenous cAMP-dependent protein kinase A (PKA) catalytic subunit led to a further increase in channel open probability. Addition of Na2ATP, in the absence of Mg2+, was ineffective, suggesting that restoration of channel activity is a Mg(2+)-dependent process. Addition of the specific PKA inhibitor, PKI, to the bath solution led to a partial, reversible inhibition in channel activity. Thus, PKA-dependent phosphorylation processes are involved in the modulation of channel activity. This observation is consistent with the presence of potential PKA phosphorylation sites on ROMK1.
In a previous study on inside-out patches of Xenopus oocytes, we demonstrated that the cystic fibrosis transmembrane conductance regulator (CFTR) enhances the glibenclamide sensitivity of a coexpressed inwardly rectifying K + channel, ROMK2 (C. M. McNicholas, W. B. Guggino, E. M. Schwiebert, S. C. Hebert, G. Giebisch, and M. E. Egan. Proc. Natl. Acad. Sci. USA 93: 8083–8088, 1996). In the present study, we used the two-microelectrode voltage-clamp technique to measure whole cell K + currents in Xenopus oocytes, and we further characterized the enhanced sensitivity of ROMK2 to glibenclamide by CFTR. Glibenclamide inhibited K + currents by 56% in oocytes expressing both ROMK2 and CFTR but only 11% in oocytes expressing ROMK2 alone. To examine the role of the first nucleotide binding fold (NBF1) of CFTR in the ROMK2-CFTR interaction, we studied the glibenclamide sensitivity of ROMK2 when coexpressed with CFTR constructs containing mutations in or around the NBF1 domain. In oocytes coinjected with ROMK2 and a truncated construct of CFTR with an intact NBF1 (CFTR-K593X), glibenclamide inhibited K + currents by 46%. However, in oocytes coinjected with ROMK2 and a CFTR mutant truncated immediately before NBF1 (CFTR-K370X), glibenclamide inhibited K + currents by 12%. Also, oocytes expressing both ROMK2 and CFTR mutants with naturally occurring NBF1 point mutations, CFTR-G551D or CFTR-A455E, display glibenclamide-inhibitable K + currents of only 14 and 25%, respectively. Because CFTR mutations that alter the NBF1 domain reduce the glibenclamide sensitivity of the coexpressed ROMK2 channel, we conclude that the NBF1 motif is necessary for the CFTR-ROMK2 interaction that confers sulfonylurea sensitivity.
Cigarette smoking causes acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction and is associated with delayed mucociliary clearance and chronic bronchitis. Roflumilast is a clinically approved phosphodiesterase 4 inhibitor that improves lung function in patients with chronic bronchitis. We hypothesized that its therapeutic benefit was related in part to activation of CFTR. Primary human bronchial epithelial (HBE) cells, Calu-3, and T84 monolayers were exposed to whole cigarette smoke (WCS) or air with or without roflumilast treatment. CFTR-dependent ion transport was measured in modified Ussing chambers. Airway surface liquid (ASL) was determined by confocal microscopy. Intestinal fluid secretion of ligated murine intestine was monitored ex vivo. Roflumilast activated CFTR-dependent anion transport in normal HBE cells with a half maximal effective concentration of 2.9 nM. Roflumilast partially restored CFTR activity in WCS-exposed HBE cells (5.3 ± 1.1 μA/cm(2) vs. 1.2 ± 0.2 μA/cm(2) [control]; P < 0.05) and was additive with ivacaftor, a specific CFTR potentiator approved for the treatment of CF. Roflumilast improved the depleted ASL depth of HBE monolayers exposed to WCS (9.0 ± 3.1 μm vs. 5.6 ± 2.0 μm [control]; P < 0.05), achieving 79% of that observed in air controls. CFTR activation by roflumilast also induced CFTR-dependent fluid secretion in murine intestine, increasing the wet:dry ratio and the diameter of ligated murine segments. Roflumilast activates CFTR-mediated anion transport in airway and intestinal epithelia via a cyclic adenosine monophosphate-dependent pathway and partially reverses the deleterious effects of WCS, resulting in augmented ASL depth. Roflumilast may benefit patients with chronic obstructive pulmonary disease with chronic bronchitis by activating CFTR, which may also underlie noninfectious diarrhea caused by roflumilast.
1. The pH dependence of a chloride conductance in the apical membrane of rat duodenal enterocytes was examined. 2. A stepwise reduction of both internal and external pH from 7.4 to 6.8 resulted in a significant stimulation of 36Cl flux driven by an inside‐positive membrane potential. 3. A stepwise reduction in pH had no significant effect upon other parameters such as the initial rate of D‐[3H]glucose or voltage‐independent 36Cl uptake, suggesting a specific effect upon the chloride conductance. 4. The pH‐dependent stimulation of 36Cl uptake exhibited saturation kinetics, with an apparent Vmax (maximum velocity) of 5.5 nmol (mg protein)‐1 (4 s)‐1 and an apparent Km (Michaelis‐Menten constant) of 88 nM H+ ions. 5. To determine the site of action of protons upon the conductance the effect of asymmetrically reducing either the internal or external pH was examined. 6. A step reduction of extracellular pH from 7.8 to 6.8 significantly stimulated the rate of 36Cl uptake. In contrast, a step reduction of internal pH from 7.8 to 6.8 was without effect upon the rate of 36Cl uptake. 7. These results suggest that the chloride conductance on the apical membrane of rat duodenal enterocytes is allosterically regulated by protons at an external site.
Introduction We have previously demonstrated that Sinupret, an established treatment prescribed widely in Europe for respiratory ailments including rhinosinusitis, promotes transepithelial chloride (Cl−) secretion in vitro and in vivo. The present study was designed to evaluate other indicators of mucociliary clearance (MCC) including ciliary beat frequency (CBF) and airway surface liquid (ASL) depth, but also investigate the mechanisms that underlie activity of this bioflavonoid. Methods Primary murine nasal septal epithelial (MNSE) [wild type (WT) and transgenic CFTR−/−], human sinonasal epithelial (HSNE), WT CFTR-expressing CFBE and TMEM16A-expressing HEK cultures were utilized for the present experiments. CBF and ASL depth measurements were performed. Mechanisms underlying transepithelial Cl− transport were determined using pharmacologic manipulation in Ussing chambers, Fura-2 intracellular calcium [Ca2+]i imaging, cAMP signaling, regulatory domain (R-D) phosphorylation of CFTR, and excised inside out and whole cell patch clamp analysis. Results Sinupret-mediated Cl− secretion [ΔISC(µA/cm2)] was pronounced in WT MNSE (20.7+/−0.9 vs. 5.6+/−0.9(control), p<0.05), CFTR−/− MNSE (10.1+/−1.0 vs. 0.9+/−0.3(control), p<0.05) and HSNE (20.7+/−0.3 vs. 6.4+/−0.9(control), p<0.05). The formulation activated Ca2+ signaling and TMEM16A channels, but also increased CFTR channel open probability (Po) without stimulating PKA-dependent pathways responsible for phosphorylation of the CFTR R-domain and resultant Cl− secretion. Sinupret also enhanced CBF and ASL depth. Conclusion Sinupret stimulates CBF, promotes transepithelial Cl− secretion, and increases ASL depth in a manner likely to enhance MCC. Our findings suggest that direct stimulation of CFTR, together with activation of Ca2+-dependent TMEM16A secretion account for the majority of anion transport attributable to Sinupret. These studies provide further rationale for using robust Cl− secretagogue based therapies as an emerging treatment modality for common respiratory diseases of MCC including acute and chronic bronchitis and CRS.
Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na + channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β 1 . Short hairpin RNA knockdown of integrin-β 1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β 1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β 1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β 1 , mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration.
pH is an important modulator of the low-conductance ATP-sensitive K + channel of the distal nephron. To examine the mechanism of interaction of protons with the channel-forming protein, we expressed the cloned renal K channel, ROMK (Kir1.x), in Xenopus oocytes and examined the response to varied concentrations of protons both in the presence and in the absence of ATP. Initial experiments were performed on inside-out patches in the absence of ATP in Mg 2+ -free solution, which prevents channel rundown. A steep sigmoidal relationship was shown between bath pH and ROMK1 or ROMK2 channel function with intracellular acidification reducing channel activity. We calculated values for p K = 7.18 and 7.04 and Hill coefficients = 3.1 and 3.3, for ROMK1 and ROMK2, respectively. Intracellular acidification (pH 7.2) also increased the Mg-ATP binding affinity of ROMK2, resulting in a leftward shift of the relationship between ATP concentration and the reduction in channel activity. The K 1/2 for Mg-ATP decreased from 2.4 mM at pH 7.4 to ∼0.5 mM at pH 7.2. Mutation of lysine-61 to methionine in ROMK2, which abolishes pH sensitivity, modulated but did not eliminate the effect of pH on ATP inhibition of channel activity. We previously demonstrated that the putative phosphate loop in the carboxy terminus of ROMK2 is involved in ATP binding and channel inhibition [C. M. McNicholas, Y. Yang, G. Giebisch, and S. C. Hebert. Am. J. Physiol. 271 ( Renal Fluid Electrolyte Physiol. 40): F275–F285, 1996]. Conceivably, therefore, protonation of the histidine residue within this region could alter net charge (i.e., positive shift) and increase affinity for the negatively charged nucleotide.