Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model. In this report, gallid herpesvirus 2 (GaHV-2), better known as Marek's disease virus (MDV), was used in its natural host, the chicken, to determine whether two homologous alphaherpesviruses can infect the same cells in vivo. MDV shares close similarities with the human alphaherpesvirus, varicella zoster virus (VZV), with respect to replication in the skin and exit from the host. Recombinant MDVs were generated that express either the enhanced GFP (eGFP) or monomeric RFP (mRFP) fused to the UL47 (VP13/14) herpesvirus tegument protein. These viruses exhibited no alteration in pathogenic potential and expressed abundant UL47-eGFP or -mRFP in feather follicle epithelial cells in vivo. Using laser scanning confocal microscopy, it was evident that these two similar, but distinguishable, viruses were able to replicate within the same cells of their natural host. Evidence of superinfection inhibition was also observed. These results have important implications for two reasons. First, these results show that during natural infection, both dual infection of cells and superinfection inhibition can co-occur at the cellular level. Secondly, vaccination against MDV with homologous alphaherpesvirus like attenuated GaHV-2, or non-oncogenic GaHV-3 or meleagrid herpesvirus (MeHV-1) has driven the virus to greater virulence and these results implicate the potential for genetic exchange between homologous avian alphaherpesviruses that could drive increased virulence. Because the live attenuated varicella vaccine is currently being administered to children, who in turn could be superinfected by wild-type VZV, this could potentiate recombination events of VZV as well.
Telomerase is a ribonucleoprotein complex involved in the maintenance of telomeres, a protective structure at the distal ends of chromosomes. The enzyme complex contains two main components, telomerase reverse transcriptase (TERT), the catalytic subunit, and telomerase RNA (TR), which serves as a template for the addition of telomeric repeats (TTAGGG)n. Marek's disease virus (MDV), an oncogenic herpesvirus inducing fatal lymphoma in chickens, encodes a TR homologue, viral TR (vTR), which significantly contributes to MDV-induced lymphomagenesis. As recent studies have suggested that TRs possess functions independently of telomerase activity, we investigated if the tumor-promoting properties of MDV vTR are dependent on formation of a functional telomerase complex. The P6.1 stem-loop of TR is known to mediate TR-TERT complex formation and we show here that interaction of vTR with TERT and, consequently, telomerase activity was efficiently abrogated by the disruption of the vTR P6.1 stem-loop (P6.1mut). Recombinant MDV carrying the P6.1mut stem-loop mutation were generated and tested for their behavior in the natural host in vivo. In contrast to viruses lacking vTR, all animals infected with the P6.1mut viruses developed MDV-induced lymphomas, but onset of tumor formation was significantly delayed. P6.1mut viruses induced enhanced metastasis, indicating functionality of non-complexed vTR in tumor dissemination. We discovered that RPL22, a cellular factor involved in T-cell development and virus-induced transformation, directly interacts with wild-type and mutant vTR and is, consequently, relocalized to the nucleoplasm. Our study provides the first evidence that expression of TR, in this case encoded by a herpesvirus, is pro-oncogenic in the absence of telomerase activity.
ABSTRACT Varicella-zoster virus (VZV) is an extremely cell-associated herpesvirus with limited egress of viral particles. The induction of autophagy in VZV-infected monolayers is easily detectable; inhibition of autophagy leads to decreased VZV glycoprotein biosynthesis and diminished viral titers. To explain how autophagic flux could exert a proviral effect on the VZV infectious cycle, we postulated that the VZV exocytosis pathway following secondary envelopment may converge with the autophagy pathway. This hypothesis depended on known similarities between VZV gE and autophagy-related (Atg) Atg9/Atg16L1 trafficking pathways. Investigations were carried out with highly purified fractions of VZV virions. When the virion fraction was tested for the presence of autophagy and endosomal proteins, microtubule-associated protein 1 light chain (MAP1LC3B) and Ras-like GTPase 11 (Rab11) were detected. By two-dimensional (2D) and 3D imaging after immunolabeling, both proteins also colocalized with VZV gE in a proportion of cytoplasmic vesicles. When purified VZV virions were enumerated after immunoelectron microscopy, gold beads were detected on viruses following incubation with antibodies to VZV gE (∼100%), Rab11 (50%), and LC3B (30%). Examination of numerous electron micrographs demonstrated that enveloped virions were housed in single-membraned vesicles; viral particles were not observed in autophagosomes. Taken together, our data suggested that some viral particles after secondary envelopment accumulated in a heterogeneous population of single-membraned vesicular compartments, which were decorated with components from both the endocytic pathway (Rab11) and the autophagy pathway (LC3B). The latter cytoplasmic viral vesicles resembled an amphisome. IMPORTANCE VZV infection leads to increased autophagic flux, while inhibition of autophagy leads to a marked reduction in virus spread. In this investigation of the proviral role of autophagy, we found evidence for an intersection of viral exocytosis and autophagy pathways. Specifically, both LC3-II and Rab11 proteins copurified with some infectious VZV particles. The results suggested that a subpopulation of VZV particles were carried to the cell surface in single-walled vesicles with attributes of an amphisome, an organelle formed from the fusion of an endosome and an autophagosome. Our results also addressed the interpretation of autophagy/xenophagy results with mutated herpes simplex virus lacking its ICP34.5 neurovirulence gene (HSVΔ34.5). The VZV genome lacks an ICP34.5 ortholog, yet we found no evidence of VZV particles housed in a double-membraned autophagosome. In other words, xenophagy, a degradative process documented after infection with HSVΔ34.5, was not observed in VZV-infected cells.
Mammalian type I interferons (IFN-α/β) are potent mediators of innate antiviral immune responses, in particular through enhancement of natural killer (NK) cell cytotoxicity. Recently, chicken IFN-α (ChIFN-α) has been identified and shown to ameliorate Newcastle disease virus (NDV) infection when given to chickens at relatively high concentrations in the drinking water. In this report, the effect of recombinant ChIFN-α (rChIFN-α) on NK cell cytotoxicity was examined using 51Cr-release assays. NK cell cytotoxic activity was also analyzed following inoculation with attenuated Marek's disease virus (MDV) serotype 1 strain R2/23 and a recombinant MDV (parent strain R2/23)-expressing ChIFN-α [rMDV(IFN-α)]. Treatment of chickens with high doses of rChIFN-α in the drinking water significantly decreased NK cell cytotoxicity compared with untreated chickens over a 7-day period. Inoculation of chickens with R2/23 significantly decreased NK cell cytotoxicity as well, whereas the rMDV(IFN-α) had no effect on NK cell cytotoxicity. Treatment of chicken embryo cell cultures with rChIFN-α inhibited replication of the very virulent MDV RB-1B strain in vitro, and oral treatment of chickens with rChIFN-α reduced MDV R2/23 replication in vivo.
Marek’s disease (MD) in chickens is caused by Gallid alphaherpesvirus 2, better known as MD herpesvirus (MDV). Current vaccines do not block interindividual spread from chicken-to-chicken, therefore, understanding MDV interindividual spread provides important information for the development of potential therapies to protect against MD, while also providing a natural host to study herpesvirus dissemination. It has long been thought that glycoprotein C (gC) of alphaherpesviruses evolved with their host based on their ability to bind and inhibit complement in a species-selective manner. Here, we tested the functional importance of gC during interindividual spread and host specificity using the natural model system of MDV in chickens through classical compensation experiments. By exchanging MDV gC with another chicken alphaherpesvirus (Gallid alphaherpesvirus 1 or infectious laryngotracheitis virus; ILTV) gC, we determined that ILTV gC could not compensate for MDV gC during interindividual spread. In contrast, exchanging turkey herpesvirus (Meleagrid alphaherpesvirus 1 or HVT) gC could compensate for chicken MDV gC. Both ILTV and MDV are Gallid alphaherpesviruses; however, ILTV is a member of the Iltovirus genus, while MDV is classified as a Mardivirus along with HVT. These results suggest that gC is functionally conserved based on the virus genera (Mardivirus vs. Iltovirus) and not the host (Gallid vs. Meleagrid).
Marek's disease (MD) is a highly transmissible, herpesvirus-associated malignancy of chickens and turkeys caused by Marek's disease virus (MDV). MD is currently controlled through the use of nonsterilizing vaccines composed of antigenically related, apathogenic herpesviruses Mardivirus 2 (MDV-2), Meleagrid herpesvirus 1 (herpesvirus of turkeys, HVT), or attenuated MDV-1 strain CVI988 (Rispens). Since the mid-1960s, field strains of MDV have increased in virulence, due, in part, to the widespread use of vaccines since the early 1970s. One mutation that we have identified common to very virulent field strains (vv and vv MDVs) since the 1990s has been a mutation in the UL1 gene, encoding glycoprotein L (gL). This mutation, a 12-nucleotide (nt) deletion in the signal peptide of gL, has been associated with increased virulence and decreased vaccine protection in the context of challenge with a vv MDV, strain TK. To determine whether this mutation alone was sufficient to confer increased virulence, we introduced this mutation into the transmission-competent pRB-1B bacterial artificial chromosome (BAC) using two-step, Red-mediated recombination. The resulting mutant, pRB-1BgLΔ, was tested for changes in replication in cell culture using multistep growth curves, plaque size analysis, viral burst analysis, and the ability to compete with the parental virus when co-transfected at different ratios and sequentially passaged. In addition, we examined this mutant for changes in pathogenicity in inoculated and contact-exposed unvaccinated and vaccinated chickens. Our data show minor differences in plaque sizes in cell culture, but no discernible changes in the infection of specific-pathogen-free (SPF) leghorn chickens. We therefore conclude that although this mutation is indeed common to MDV field strains isolated in the eastern United States, it is insufficient to confer increased virulence or loss of vaccine protection previously observed for a vv MDV strain having this mutation.Una deleción en el gene de la glicoproteína L de cepas de campo del virus de la enfermedad de Marek en los Estados Unidos es insuficiente para conferir mayor patogenicidad a un cromosoma bacteriano artificial basado en la cepa, RB-1B.La enfermedad de Marek (MD) es una enfermedad tumoral de pollos y pavos que es altamente transmisible asociada a un herpesvirus y es causada por el virus de la enfermedad de Marek (MDV). La enfermedad de Marek está actualmente controlada a través del uso de las vacunas compuestas de herpesvirus no patógenos relacionados antigénicamente, Mardivirus 2 (MDV-2) y Meleagrid herpesvirus 1 (herpesvirus de los pavos, HVT), o con la cepa atenuada CVI988 (Rispens). Desde mediados de la década de los 1960s, las cepas de campo del virus de Marek han aumentado su virulencia, debido en parte al uso generalizado de vacunas desde principios de los años 1970s. Se ha identificado una mutación común con las cepas de campo altamente virulentas (vv y vv MDV) desde la década de los 1990s, ha sido una mutación en el gen UL1, que codifica la glicoproteína L (gL). Esta mutación, que es una deleción de 12 nucleótidos (nt) en el péptido señal de la glicoproteína L, se ha asociado con aumento en la virulencia y con la disminución de la protección de vacuna ante un desafío con la cepa muy virulenta plus, cepa TK. Para determinar si esta mutación por sí sola era suficiente para conferir mayor virulencia, se introdujo esta mutación en un cromosoma bacteriano artificial (BAC) denominado pRB-1B que es competente en su transmisión, utilizando una recombinación mediada por Red de dos pasos. Se analizó el mutante resultante, pRB-1BgLΔ, para determinar los cambios en la replicación en cultivo celular mediante curvas de crecimiento de pasos múltiples, análisis del tamaño de las placas, análisis de estallido viral, y la capacidad para competir con el virus progenitor cuando se co-transfectaron en diferentes proporciones y con pasajes secuenciales. Además, se examinó este v
Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.
Nitric oxide (NO), a free radical produced by the enzyme NO synthase (NOS), is a potent antiviral agent in addition to having immune regulating functions. Recently, it was reported that chickens resistant (N2a, MHC: B21B21) to the development of Marek's disease (MD) had a greater potential to produce NO than MD-susceptible chickens (P2a, MHC: B19B19). This difference was shown by measuring NO levels in chick embryo fibroblast cultures obtained from these chickens after treatment with lipopolysaccharide and recombinant chicken interferon-gamma (IFN-γ). To extend these results, the levels of NO in blood plasma from N2a and P2a chickens inoculated with the nonattenuated JM-16 strain of MD virus (MDV) were examined. In four out of five experiments, N2a chickens had increased NO levels at 7 days postinoculation (DPI). In contrast, P2a chickens challenged with JM-16 had a significant increase in NO in only one of four experiments, and in that experiment the increase was delayed (10 DPI) compared with N2a chickens. Attenuation abrogated MDV-induced NO in chickens. Inoculation with MDV strains ranging from mild to very virulent plus showed that the more virulent strains induced the highest level of NO in blood plasma, suggesting a role of NO in the pathogenesis of MD with more virulent strains. On the basis of quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR) assays for analysis of mRNA expression, IFN-γ does not appear to be the primary inducer of inducible (i)NOS gene expression during MDV infection. iNOS gene expression and NO production are mediated during the cytolytic phase of MDV infection on the basis of real-time RT-PCR assays with primers specific for glycoprotein B, a late gene expressed only during the cytolytic phase of MDV infection. These findings implicate NO as a factor potentially involved in increasing virulence of MDV, possibly through immune suppression.