Data on the natural history of facioscapulohumeral dystrophy (FSHD) in childhood are limited and critical for improved patient care and clinical trial readiness. Our objective was to describe the disease course of FSHD in children.We performed a nationwide, single-center, prospective cohort study of FSHD in childhood assessing muscle functioning, imaging, and quality of life over 2 years of follow-up.We included 20 children with genetically confirmed FSHD who were 2 to 17 years of age. Overall, symptoms were slowly progressive, and the mean FSHD clinical score increased from 2.1 to 2.8 (p = 0.003). The rate of progression was highly variable. At baseline, 16 of 20 symptomatic children had facial weakness; after 2 years, facial weakness was observed in 19 of 20 children. Muscle strength did not change between baseline and follow-up. The most frequently and most severely affected muscles were the trapezius and deltoid. The functional exercise capacity, measured with the 6-minute walk test, improved. Systemic features were infrequent and nonprogressive. Weakness-associated complications such as lumbar hyperlordosis and dysarthria were common, and their prevalence increased during follow-up. Pain and fatigue were frequent complaints in children, and their prevalence also increased during follow-up. Muscle ultrasonography revealed a progressive increase in echogenicity.FSHD in childhood has a slowly progressive but variable course over 2 years of follow-up. The most promising outcome measures to detect progression were the FSHD clinical score and muscle ultrasonography. Despite this disease progression, an improvement on functional capacity may still occur as the child grows up. Pain, fatigue, and a decreased quality of life were common symptoms and need to be addressed in the management of childhood FSHD. Our data can be used to counsel patients and as baseline measures for treatment trials in childhood FSHD.
Background Facioscapulohumeral dystrophy (FSHD) is an inherited muscular dystrophy clinically characterised by muscle weakness starting with the facial and upper extremity muscles. A disease model has been developed that postulates that failure in somatic repression of the transcription factor DUX4 embedded in the D4Z4 repeat on chromosome 4q causes FSHD. However, due to the position of the D4Z4 repeat close to the telomere and the complex genetic and epigenetic aetiology of FSHD, there is ongoing debate about the transcriptional deregulation of closely linked genes and their involvement in FSHD. Method Detailed genetic characterisation and gene expression analysis of patients with clinically confirmed FSHD and control individuals. Results Identification of two FSHD families in which the disease is caused by repeat contraction and DUX4 expression from chromosome 10 due to a de novo D4Z4 repeat exchange between chromosomes 4 and 10. We show that the genetic lesion causal to FSHD in these families is physically separated from other candidate genes on chromosome 4. We demonstrate that muscle cell cultures from affected family members exhibit the characteristic molecular features of FSHD, including DUX4 and DUX4 target gene expression, without showing evidence for transcriptional deregulation of other chromosome 4-specific candidate genes. Conclusion This study shows that in rare situations, FSHD can occur on chromosome 10 due to an interchromosomal rearrangement with the FSHD locus on chromosome 4q. These findings provide further evidence that DUX4 derepression is the dominant disease pathway for FSHD. Hence, therapeutic strategies should focus on DUX4 as the primary target.
Objective Facioscapulohumeral dystrophy (FSHD) is one of the most frequent heritable muscular dystrophies, with a large variety in age at onset and disease severity. The natural history and molecular characteristics of FSHD in childhood are incompletely understood. Our objective is to clinically and genetically characterize FSHD in childhood. Methods We performed a nationwide, single‐investigator, natural history study on FSHD in childhood. Results Multiple‐source recruitment resulted in 32 patients with FSHD (0–17 years), leading to an estimated prevalence of 1 in 100,000 children in The Netherlands. This series of 32 children with FSHD revealed a heterogeneous phenotype and genotype in childhood. The phenotypic hallmarks of FSHD in childhood are: facial weakness with normal or only mildly affected motor performance, decreased functional exercise capacity (6‐minute walk test), lumbar hyperlordosis, and increased echo intensity on muscle ultrasonography. In addition, pain and fatigue were frequent and patients experienced a lower quality of life compared to healthy peers. In contrast to the literature on early‐onset FSHD, systemic features such as hearing loss and retinal and cardiac abnormalities were infrequent and subclinical, and epilepsy and intellectual disability were absent. Genotypically, patients had a mean D4Z4 repeat array of 5 units (range, 2–9), and 14% of the mutations were de novo. Interpretation FSHD in childhood is more prevalent than previously known and the genotype resembles classic FSHD. Importantly, FSHD mainly affects functional exercise capacity and quality of life in children. As such, these results are paramount for counseling, clinical management, and stratification in clinical research. Ann Neurol 2018;84:635–645
Abstract Ophthalmological abnormalities in facioscapulohumeral dystrophy may lead to treatable vision loss, facilitate diagnostics, could help unravelling the pathophysiology and serve as biomarkers. In this study, we provide a detailed description of the ophthalmological findings in a well-defined cohort of patients with facioscapulohumeral dystrophy using state of the art retina imaging techniques. Thirty-three genetically confirmed patients (aged 7–80 years) and 24 unrelated healthy controls (aged 6–68 years) underwent clinical ophthalmological examination, fundus photography, optical coherence tomography/angiography, genotyping and neurological examination. All patients had normal corrected visual acuity and normal intraocular pressure. In 27 of the 33 patients, weakness of the orbicularis oculi was observed. Central retinal pathology, only seen in patients and not in healthy controls, included twisting (tortuosity) of the retinal arteries in 25 of the 33 patients and retinal pigment epithelium defects in 4 of the 33 patients. Asymmetrical foveal hypoplasia was present in three patients, and exudative abnormalities were observed in one patient. There was a correlation between the severity of retinal tortuosity and the D4Z4 repeat array size (R2 = 0.44, P < 0.005). Follow-up examination in a subgroup of six patients did not show any changes after 2 years. To conclude, retinal abnormalities were frequent but almost always subclinical in patients with facioscapulohumeral dystrophy and consisted primarily of arterial tortuosity and foveal abnormalities. Retinal tortuosity was seen in the retinal arterioles and correlated with the D4Z4 repeat array size, thereby providing clinical evidence for an underlying genetic linkage between the retina and facioscapulohumeral dystrophy.
We thank Drs. Brignol and Urtizberea for the comment on our article.1 We agree that retinal abnormalities are an interesting additional mode to study the penetrance of facioscapulohumeral dystrophy (FSHD). Indeed, we are currently performing an observational study on retinal abnormalities in another cohort of patients with FSHD. We acknowledge that a family-based approach would offer additional insights. Also, we agree that interdisciplinary collaborations enhance our understanding of the pathophysiology and optimal care for patients.
Bariatric surgery is in general the only effective treatment for morbid obesity. Bariatric surgery is frequently associated with vitamin and mineral deficiencies which may lead to neurological and other symptoms. We describe a case of severe vitamin B1 (thiamine) deficiency.A 49-year-old man visited the emergency department with acute confusion, muscle weakness in arms and legs and visual impairment after a period of dysphagia and recurrent vomiting. Four months earlier, he had had bariatric gastric sleeve surgery for morbid obesity. Laboratory tests demonstrated that he had vitamin B1 deficiency, in view of which the diagnosis of beriberi and Wernicke encephalopathy was made. Despite normalisation of the vitamin B1 concentration following intravenous supplementation, the muscle strength hardly recovered and the patient developed Korsakov syndrome.For this deficiency there is no other treatment than vitamin B1 supplementation. Timely recognition of vitamin deficiencies and pro-active supplementation are essential in order to prevent serious complications following bariatric surgery.