Background. Approximately 15 700 invasive methicillin-resistant Staphylococcus aureus (MRSA) infections occurred in US dialysis patients in 2010. Frequent hospital visits and prolonged bloodstream access, especially via central venous catheters (CVCs), are risk factors among hemodialysis patients. We describe the epidemiology of and recent trends in invasive MRSA infections among dialysis patients.
Hospital antimicrobial consumption data are widely available; however, large-scale assessments of the quality of antimicrobial use in US hospitals are limited.
Objective
To evaluate the appropriateness of antimicrobial use for hospitalized patients treated for community-acquired pneumonia (CAP) or urinary tract infection (UTI) present at admission or for patients who had received fluoroquinolone or intravenous vancomycin treatment.
Design, Setting, and Participants
This cross-sectional study included data from a prevalence survey of hospitalized patients in 10 Emerging Infections Program sites. Random samples of inpatients on hospital survey dates from May 1 to September 30, 2015, were identified. Medical record data were collected for eligible patients with 1 or more of 4 treatment events (CAP, UTI, fluoroquinolone treatment, or vancomycin treatment), which were selected on the basis of common infection types reported and antimicrobials given to patients in the prevalence survey. Data were analyzed from August 1, 2017, to May 31, 2020.
Exposure
Antimicrobial treatment for CAP or UTI or with fluoroquinolones or vancomycin.
Main Outcomes and Measures
The percentage of antimicrobial use that was supported by medical record data (including infection signs and symptoms, microbiology test results, and antimicrobial treatment duration) or for which some aspect of use was unsupported. Unsupported antimicrobial use was defined as (1) use of antimicrobials to which the pathogen was not susceptible, use in the absence of documented infection signs or symptoms, or use without supporting microbiologic data; (2) use of antimicrobials that deviated from recommended guidelines; or (3) use that exceeded the recommended duration.
Results
Of 12 299 patients, 1566 patients (12.7%) in 192 hospitals were included; the median age was 67 years (interquartile range, 53-79 years), and 864 (55.2%) were female. A total of 219 patients (14.0%) were included in the CAP analysis, 452 (28.9%) in the UTI analysis, 550 (35.1%) in the fluoroquinolone analysis, and 403 (25.7%) in the vancomycin analysis; 58 patients (3.7%) were included in both fluoroquinolone and vancomycin analyses. Overall, treatment was unsupported for 876 of 1566 patients (55.9%; 95% CI, 53.5%-58.4%): 110 of 403 (27.3%) who received vancomycin, 256 of 550 (46.5%) who received fluoroquinolones, 347 of 452 (76.8%) with a diagnosis of UTI, and 174 of 219 (79.5%) with a diagnosis of CAP. Among patients with unsupported treatment, common reasons included excessive duration (103 of 174 patients with CAP [59.2%]) and lack of documented infection signs or symptoms (174 of 347 patients with UTI [50.1%]).
Conclusions and Relevance
The findings suggest that standardized assessments of hospital antimicrobial prescribing quality can be used to estimate the appropriateness of antimicrobial use in large groups of hospitals. These assessments, performed over time, may inform evaluations of the effects of antimicrobial stewardship initiatives nationally.
Objective. To investigate an outbreak of New Delhi metallo- β -lactamase (NDM)–producing carbapenem-resistant Enterobacteriaceae (CRE) and determine interventions to interrupt transmission. Design, Setting, and Patients. Epidemiologic investigation of an outbreak of NDM-producing CRE among patients at a Colorado acute care hospital. Methods. Case patients had NDM-producing CRE isolated from clinical or rectal surveillance cultures (SCs) collected during the period January 1, 2012, through October 20, 2012. Case patients were identified through microbiology records and 6 rounds of SCs in hospital units where they had resided. CRE isolates were tested by real-time polymerase chain reaction for bla NDM . Medical records were reviewed for epidemiologic links; relatedness of isolates was evaluated by pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). Infection control (IC) was assessed through staff interviews and direct observations. Results. Two patients were initially identified with NDM-producing CRE during July–August 2012. A third case patient, admitted in May, was identified through microbiology records review. SC identified 5 additional case patients. Patients had resided in 11 different units before identification. All isolates were highly related by PFGE. WGS suggested 3 clusters of CRE. Combining WGS with epidemiology identified 4 units as likely transmission sites. NDM-producing CRE positivity in certain patients was not explained by direct epidemiologic overlap, which suggests that undetected colonized patients were involved in transmission. Conclusions. A 4-month outbreak of NDM-producing CRE occurred at a single hospital, highlighting the risk for spread of these organisms. Combined WGS and epidemiologic data suggested transmission primarily occurred on 4 units. Timely SC, combined with targeted IC measures, were likely responsible for controlling transmission.
Background. Antibiotic use predisposes patients to Clostridium difficile infections (CDI), and approximately 32% of these infections are community-associated (CA) CDI. The population-level impact of antibiotic use on adult CA-CDI rates is not well described. Methods. We used 2011 active population- and laboratory-based surveillance data from 9 US geographic locations to identify adult CA-CDI cases, defined as C difficile-positive stool specimens (by toxin or molecular assay) collected from outpatients or from patients ≤3 days after hospital admission. All patients were surveillance area residents and aged ≥20 years with no positive test ≤8 weeks prior and no overnight stay in a healthcare facility ≤12 weeks prior. Outpatient oral antibiotic prescriptions dispensed in 2010 were obtained from the IMS Health Xponent database. Regression models examined the association between outpatient antibiotic prescribing and adult CA-CDI rates. Methods. Healthcare providers prescribed 5.2 million courses of antibiotics among adults in the surveillance population in 2010, for an average of 0.73 per person. Across surveillance sites, antibiotic prescription rates (0.50-0.88 prescriptions per capita) and unadjusted CA-CDI rates (40.7-139.3 cases per 100 000 persons) varied. In regression modeling, reducing antibiotic prescribing rates by 10% among persons ≥20 years old was associated with a 17% (95% confidence interval, 6.0%-26.3%; P = .032) decrease in CA-CDI rates after adjusting for age, gender, race, and type of diagnostic assay. Reductions in prescribing penicillins and amoxicillin/clavulanic acid were associated with the greatest decreases in CA-CDI rates. Conclusions and Relevance. Community-associated CDI prevention should include reducing unnecessary outpatient antibiotic use. A modest reduction of 10% in outpatient antibiotic prescribing can have a disproportionate impact on reducing CA-CDI rates.
Carbapenem-resistant Enterobacteriaceae (CRE) are increasingly reported worldwide as a cause of infections with high-mortality rates. Assessment of the US epidemiology of CRE is needed to inform national prevention efforts.To determine the population-based CRE incidence and describe the characteristics and resistance mechanism associated with isolates from 7 US geographical areas.Population- and laboratory-based active surveillance of CRE conducted among individuals living in 1 of 7 US metropolitan areas in Colorado, Georgia, Maryland, Minnesota, New Mexico, New York, and Oregon. Cases of CRE were defined as carbapenem-nonsusceptible (excluding ertapenem) and extended-spectrum cephalosporin-resistant Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae complex, Klebsiella pneumoniae, or Klebsiella oxytoca that were recovered from sterile-site or urine cultures during 2012-2013. Case records were reviewed and molecular typing for common carbapenemases was performed.Demographics, comorbidities, health care exposures, and culture source and location.Population-based CRE incidence, site-specific standardized incidence ratios (adjusted for age and race), and clinical and microbiological characteristics.Among 599 CRE cases in 481 individuals, 520 (86.8%; 95% CI, 84.1%-89.5%) were isolated from urine and 68 (11.4%; 95% CI, 8.8%-13.9%) from blood. The median age was 66 years (95% CI, 62.1-65.4 years) and 284 (59.0%; 95% CI, 54.6%-63.5%) were female. The overall annual CRE incidence rate per 100<000 population was 2.93 (95% CI, 2.65-3.23). The CRE standardized incidence ratio was significantly higher than predicted for the sites in Georgia (1.65 [95% CI, 1.20-2.25]; P < .001), Maryland (1.44 [95% CI, 1.06-1.96]; P = .001), and New York (1.42 [95% CI, 1.05-1.92]; P = .048), and significantly lower than predicted for the sites in Colorado (0.53 [95% CI, 0.39-0.71]; P < .001), New Mexico (0.41 [95% CI, 0.30-0.55]; P = .01), and Oregon (0.28 [95% CI, 0.21-0.38]; P < .001). Most cases occurred in individuals with prior hospitalizations (399/531 [75.1%; 95% CI, 71.4%-78.8%]) or indwelling devices (382/525 [72.8%; 95% CI, 68.9%-76.6%]); 180 of 322 (55.9%; 95% CI, 50.0%-60.8%) admitted cases resulted in a discharge to a long-term care setting. Death occurred in 51 (9.0%; 95% CI, 6.6%-11.4%) cases, including in 25 of 91 cases (27.5%; 95% CI, 18.1%-36.8%) with CRE isolated from normally sterile sites. Of 188 isolates tested, 90 (47.9%; 95% CI, 40.6%-55.1%) produced a carbapenemase.In this population- and laboratory-based active surveillance system in 7 states, the incidence of CRE was 2.93 per 100<000 population. Most CRE cases were isolated from a urine source, and were associated with high prevalence of prior hospitalizations or indwelling devices, and discharge to long-term care settings.
Nucleic acid amplification testing (NAAT) is increasingly being adopted for diagnosis of Clostridium difficile infection (CDI). Data from 3 states conducting population-based CDI surveillance showed increases ranging from 43% to 67% in CDI incidence attributable to changing from toxin enzyme immunoassays to NAAT. CDI surveillance requires adjustment for testing methods.
COVID-19 vaccines are an effective tool to prevent illness due to SARS-CoV-2 infection. However, infection after vaccination still occurs. We evaluated all infections identified among recipients of either the Pfizer-BioNTech or Moderna COVID-19 vaccine in five U.S. states during January-March 2021.
Abstract The majority of paediatric Clostridioides difficile infections (CDI) are community-associated (CA), but few data exist regarding associated risk factors. We conducted a case–control study to evaluate CA-CDI risk factors in young children. Participants were enrolled from eight US sites during October 2014–February 2016. Case-patients were defined as children aged 1–5 years with a positive C. difficile specimen collected as an outpatient or ⩽3 days of hospital admission, who had no healthcare facility admission in the prior 12 weeks and no history of CDI. Each case-patient was matched to one control. Caregivers were interviewed regarding relevant exposures. Multivariable conditional logistic regression was performed. Of 68 pairs, 44.1% were female. More case-patients than controls had a comorbidity (33.3% vs. 12.1%; P = 0.01); recent higher-risk outpatient exposures (34.9% vs. 17.7%; P = 0.03); recent antibiotic use (54.4% vs. 19.4%; P < 0.0001); or recent exposure to a household member with diarrhoea (41.3% vs. 21.5%; P = 0.04). In multivariable analysis, antibiotic exposure in the preceding 12 weeks was significantly associated with CA-CDI (adjusted matched odds ratio, 6.25; 95% CI 2.18–17.96). Improved antibiotic prescribing might reduce CA-CDI in this population. Further evaluation of the potential role of outpatient healthcare and household exposures in C. difficile transmission is needed.
Candidemia, a bloodstream infection caused by Candida species, is typically considered a health care-associated infection, with known risk factors including the presence of a central venous catheter, receipt of total parenteral nutrition or broad-spectrum antibiotics, recent abdominal surgery, admission to an intensive care unit, and prolonged hospitalization (1,2). Injection drug use (IDU) is not a common risk factor for candidemia; however, in the context of the ongoing opioid epidemic and corresponding IDU increases, IDU has been reported as an increasingly common condition associated with candidemia (3) and methicillin-resistant Staphylococcus aureus bacteremia (4). Little is known about the epidemiology of candidemia among persons who inject drugs. The Colorado Department of Public Health and Environment (CDPHE) conducts population-based surveillance for candidemia in the five-county Denver metropolitan area, encompassing 2.7 million persons, through CDC's Emerging Infections Program (EIP). As part of candidemia surveillance, CDPHE collected demographic, clinical, and IDU behavior information for persons with Candida-positive blood cultures during May 2017-August 2018. Among 203 candidemia cases reported, 23 (11%) occurred in 22 patients with a history of IDU in the year preceding their candidemia episode. Ten (43%) of the 23 cases were considered community-onset infections, and four (17%) cases were considered community-onset infections with recent health care exposures. Seven (32%) of the 22 patients had disseminated candidiasis with end-organ dysfunctions; four (18%) died during their hospitalization. In-hospital IDU was reported among six (27%) patients, revealing that IDU can be a risk factor in the hospital setting as well as in the community. In addition to community interventions, opportunities to intervene during health care encounters to decrease IDU and unsafe injection practices might prevent infections, including candidemia, among persons who inject drugs.