Cryptosporidiosis is a parasitic diarrheal infection that is transmitted by the fecal-oral route. We assessed trends in incidence and demographic characteristics for the 3,984 cases diagnosed during 1995-2018 in New York City, New York, USA, and reported to the New York City Department of Health and Mental Hygiene. Reported cryptosporidiosis incidence decreased with HIV/AIDS treatment rollout in the mid-1990s, but the introduction of syndromic multiplex diagnostic panels in 2015 led to a major increase in incidence and to a shift in the demographic profile of reported patients. Incidence was highest among men 20-59 years of age, who consistently represented most (54%) reported patients. In addition, 30% of interviewed patients reported recent international travel. The burden of cryptosporidiosis in New York City is probably highest among men who have sex with men. Prevention messaging is warranted for men who have sex with men and their healthcare providers, as well as for international travelers.
Eukaryotic 80S ribosomes of known structure are far more complex than their 70S bacterial counterparts. Those from Saccharomyces cerevisiae, Tetrahymena thermophila, and Triticum aestivum, for example, bear insertions of ribosomal RNA (rRNA) called expansion segments (ES) and additional ribosomal proteins. The ribosomes of the kinetoplastid Trypanosoma brucei, though, are especially fascinating: structurally and their other kinetoplastids’ ribosomes bear very large ESs, as well as smaller ESs, and protein extensions. Additionally, T. brucei ribosomes require novel protein factors for maturation, although they do not require several eukaryotic initiation factors or a recycling factor. As a species, T. brucei is fascinating not only in terms of structure, but also in terms of gene expression and even public health: the species is responsible for the incurable, terminal human African Trypanosomiasis (sleeping sickness); and during post-transcriptional regulation, a single common RNA segment called a splice leader is trans-spliced onto the 5′ ends of many of T. brucei’s mRNAs. The purpose of this splice event in translation is unknown. Here, we present a high-resolution structure of the T. brucei ribosome which contributes a great deal to addressing the above unknowns. We have employed map segmentation, homology modeling, ab initio rRNA modeling, and Molecular Dynamics Flexible Fitting (MDFF) to model the ribosome’s atomic structure. The positions and structures of the ribosome’s novel ESs and protein extensions were previously unknown, but our structure reveals the precise spatial contexts of these components. With this information in hand, we can begin to decipher T. brucei’s unusual translational requirements.
ABSTRACT Babesiosis is an emerging zoonosis with important public health implications, as the incidence of the disease has risen dramatically over the past decade. Because the current gold standard for detection of Babesia is microscopic examination of blood smears, accurate identification requires trained personnel. Species in the genus cannot be distinguished microscopically, and Babesia can also be confused with the early trophozoite stage (ring forms) of Plasmodium parasites. To allow more accurate diagnosis in a format that is accessible to a wider variety of laboratories, we developed a real-time PCR assay targeting the 18S rRNA gene of Babesia microti , the dominant babesiosis pathogen in the United States. The real-time PCR is performed on DNA extracted from whole-blood specimens and detects Babesia microti with a limit of detection of ∼100 gene copies in 5 μl of blood. The real-time PCR assay was shown to be 100% specific when tested against a panel of 24 organisms consisting of Babesia microti , other Babesia species, Plasmodium species, tick-borne and other pathogenic bacteria, and other blood-borne parasites. The results using clinical specimens show that the assay can detect infections of lower parasitemia than can be detected by microscopic examination. This method is therefore a rapid, sensitive, and accurate method for detection of Babesia microti in patient specimens.
An 8-y-old, intact, male rhesus macaque (Macaca mulatta) was sedated to undergo MRI in preparation for the implantation of cranial hardware. During imaging, 9 focal lesions were noted in the brain and musculature of the head. The lesions were hyperechoic with hypoechoic rims. The animal was deemed inappropriate for neuroscience research, and euthanasia was elected. Gross examination revealed multiple round, thick-walled, fluid-filled cysts (diameter, approximately 0.5 cm) in multiple tissues: one each in the left caudal lung lobe, left masseter muscle, and the dura overlying the brain and 8 throughout the gray and white matter of the brain parenchyma. Formalin-fixed sections of cyst-containing brain were stained with hematoxylin and eosin. Microscopic examination and molecular analysis of the COX1 (COI) gene recognized the causative organism as Taenia solium at 99.04% identity.
Abstract Entamoeba histolytica is considered the primary species causing the parasitic gastrointestinal infection amebiasis. A cluster of amebiasis infections was identified in 2018 among men who have sex with men in New York City and was likely caused by Entamoeba dispar, traditionally considered to be nonpathogenic.
Common causes of chronic diarrhea among travelers worldwide include protozoan parasites. The majority of parasitic infections are caused by Giardia duodenalis, Entamoeba histolytica, Cryptosporidium parvum, and Cryptosporidium hominis Similarly, these species cause the majority of parasitic diarrhea acquired in the United States. Detection of parasites by gold standard microscopic methods is time-consuming and requires considerable expertise; enzyme immunoassays and direct fluorescent-antibody (DFA) stains have lowered hands-on time for testing, but improvements in sensitivity and technical time may be possible with a PCR assay. We performed a clinical evaluation of a multiplex PCR panel, the enteric parasite panel (EPP), for the detection of these common parasites using the BD Max instrument, which performs automated extraction and amplification. A total of 2,495 compliant specimens were enrolled, including 2,104 (84%) specimens collected prospectively and 391 (16%) specimens collected retrospectively. Approximately equal numbers were received in 10% formalin (1,273 specimens) and unpreserved (1,222 specimens). The results from the EPP were compared to those from alternate PCR and bidirectional sequencing (APCR), as well as DFA (G. duodenalis and C. parvum or C. hominis) or trichrome stain (E. histolytica). The sensitivity and specificity for prospective and retrospective specimens combined were 98.2% and 99.5% for G. duodenalis, 95.5% and 99.6 for C. parvum or C. hominis, and 100% and 100% for E. histolytica, respectively. The performance of the FDA-approved BD Max EPP compared well to the reference methods and may be an appropriate substitute for microscopic examination or immunoassays.