<div>Abstract<p>High-constitutive activity of the DNA damage response protein checkpoint kinase 1 (CHK1) has been shown in glioblastoma (GBM) cell lines and in tissue sections. However, whether constitutive activation and overexpression of CHK1 in GBM plays a functional role in tumorigenesis or has prognostic significance is not known. We interrogated multiple glioma patient cohorts for expression levels of CHK1 and the oncogene cancerous inhibitor of protein phosphatase 2A (CIP2A), a known target of high-CHK1 activity, and examined the relationship between these two proteins in GBM. Expression levels of CHK1 and CIP2A were independent predictors for reduced overall survival across multiple glioma patient cohorts. Using siRNA and pharmacologic inhibitors we evaluated the impact of their depletion using both <i>in vitro</i> and <i>in vivo</i> models and sought a mechanistic explanation for high CIP2A in the presence of high-CHK1 levels in GBM and show that; (i) CHK1 and pSTAT3 positively regulate CIP2A gene expression; (ii) pSTAT3 and CIP2A form a recursively wired transcriptional circuit; and (iii) perturbing CIP2A expression induces GBM cell senescence and retards tumor growth <i>in vitro</i> and <i>in vivo</i>. Taken together, we have identified an oncogenic transcriptional circuit in GBM that can be destabilized by targeting CIP2A.</p>Implications:<p>High expression of CIP2A in gliomas is maintained by a CHK1-dependent pSTAT3–CIP2A recursive loop; interrupting CIP2A induces cell senescence and slows GBM growth adding impetus to the development of CIP2A as an anticancer drug target.</p></div>
Abstract The BloodChIP Xtra database (http://bloodchipXtra.vafaeelab.com/) facilitates genome-wide exploration and visualization of transcription factor (TF) occupancy and chromatin configuration in rare primary human hematopoietic stem (HSC-MPP) and progenitor (CMP, GMP, MEP) cells and acute myeloid leukemia (AML) cell lines (KG-1, ME-1, Kasumi1, TSU-1621-MT), along with chromatin accessibility and gene expression data from these and primary patient AMLs. BloodChIP Xtra features significantly more datasets than our earlier database BloodChIP (two primary cell types and two cell lines). Improved methodologies for determining TF occupancy and chromatin accessibility have led to increased availability of data for rare primary cell types across the spectrum of healthy and AML hematopoiesis. However, there is a continuing need for these data to be integrated in an easily accessible manner for gene-based queries and use in downstream applications. Here, we provide a user-friendly database based around genome-wide binding profiles of key hematopoietic TFs and histone marks in healthy stem/progenitor cell types. These are compared with binding profiles and chromatin accessibility derived from primary and cell line AML and integrated with expression data from corresponding cell types. All queries can be exported to construct TF–gene and protein–protein networks and evaluate the association of genes with specific cellular processes.
ABSTRACT Progressively acquired somatic mutations in hematopoietic stem cells are central to pathogenesis in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). They can lead to proliferative advantages, impaired differentiation and progressive cytopenias. MDS or CMML patients with high-risk disease are treated with hypomethylating agents including 5-azacytidine (AZA). Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated hematopoietic stem and progenitor cells (HSPCs). However, the contribution of mutated HSPCs to steadystate hematopoiesis in MDS and CMML is unclear. To address this, we characterised the somatic mutations of individual stem, progenitor (common myeloid progenitor, granulocyte monocyte progenitor, megakaryocyte erythroid progenitor), and matched circulating (monocyte, neutrophil, naïve B cell) haematopoietic cells in treatment naïve and AZA-treated MDS and CMML via high-throughput single cell genotyping. The mutational burden was similar across multiple hematopoietic cell types, and even the most mutated stem and progenitor clones maintained their capacity to differentiate to mature myeloid and, in some cases, lymphoid cell types in vivo. Our data show that even highly mutated HSPCs contribute significantly to circulating blood cells in MDS and CMML, prior to and following AZA treatment. Key points * Highly mutated HSPCs contribute significantly to circulating blood cells in MDS and CMML, prior to and following AZA treatment. * The mutational burden in matched bone marrow and peripheral blood cells in MDS and CMML was similar throughout myelopoiesis.