Glycoproteomics has recently increased in popularity due to instrumental and methodological advances. That said, O-glycoproteomic analysis is still challenging for various reasons, including signal suppression, search algorithm limitations, and co-occupancy of N- and O-glycopeptides. To decrease sample complexity and simplify analysis, most O-glycoproteomic workflows include PNGaseF digestion, which is an endoglycosidase that removes most N-glycan structures. Here, we report that N-glycans released from PNGaseF digestion were identified during data acquisition and hampered detection of O-glycopeptides. Importantly, we noted instances where free glycans adducted to unmodified peptides in the gas phase and were misidentified by search algorithms as O-glycopeptides. We confirmed the presence of free glycans in other experiments performed in our laboratory, as well as from data generated by other groups. To overcome this limitation, we demonstrated that released N-glycans can be removed using a molecular weight cut off filter prior to (glyco)protease digestion, which improves O-glycoproteomic coverage.
Abstract Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key regulators in cellular immunity. However, their dense O-glycosylation remains enigmatic, primarily due to the challenges associated with studying mucin domains. Here, we demonstrate that the mucinase SmE has a unique ability to cleave at residues bearing very complex glycans. SmE enables improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we perform molecular dynamics (MD) simulations of TIM-3 and -4 to understand how glycosylation affects structural features of these proteins. Finally, we use these models to investigate the functional relevance of glycosylation for TIM-3 function and ligand binding. Overall, we present a powerful workflow to better understand the detailed molecular structures and functions of the mucinome.
Glycoproteomics has recently increased in popularity due to instrumental and methodological advances. That said, O-glycoproteomic analysis is still challenging for various reasons, including signal suppression, search algorithm limitations, and co-occupancy of N- and O-glycopeptides. To decrease sample complexity and simplify analysis, most O-glycoproteomic workflows include PNGaseF digestion, which is an endoglycosidase that removes most N-glycan structures. Here, we report that N-glycans released from PNGaseF digestion were identified during data acquisition and hampered detection of O-glycopeptides. Importantly, we noted instances where free glycans adducted to unmodified peptides in the gas phase and were misidentified by search algorithms as O-glycopeptides. We confirmed the presence of free glycans in other experiments performed in our laboratory, as well as from data generated by other groups. To overcome this limitation, we demonstrated that released N-glycans can be removed using a molecular weight cut off filter prior to (glyco)protease digestion, which improves O-glycoproteomic coverage.
Abstract Despite many years of published medical society guidelines for red blood cell (RBC) transfusion therapy, along with clinical trials that provide Level 1 evidence that restrictive transfusion practices can be used safely and are equivalent to transfusions given more liberally, annualized blood transfusion activity did not begin to decline in the United States until 2010. Adoption of electronic medical records has subsequently allowed implementation of clinical decision support (CDS): best practice alerts that can be initiated to improve the use of blood components. We describe our own institutional experience using a targeted CDS to promote restrictive blood transfusion practice and to improve RBC use. A 42% reduction in RBC transfusions was demonstrated at our institution from a baseline in 2008 through 2015, and the rate remained stable through 2018. Although the data cannot be used to infer causality, this decreased RBC use was accompanied by improved clinical outcomes.
Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains (CRDs), our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize, but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.