Loosening of orthopedic hip prostheses is an increasing health problem. In elderly patients with comorbidity, revision surgery may lead to high mortality rates. A less invasive surgical technique is therefore required to reduce these patient risks. To this end a percutaneous gene therapy approach was designed to destroy the periprosthetic loosening membrane, and enable refixing of the hip prosthesis with percutaneous bone cement injections under radiological guidance. In this phase 1/2 dose-escalating gene therapy clinical trial, 12 patients were treated. Toxicity and hip function variables were monitored up to 6 months posttreatment. All patients completed the study and no dose-limiting toxicity was observed. Improvement in walking distance, independence, and pain was demonstrated particularly in patients receiving 3 × 1010 and 1 × 1011 viral particles. Taken together, these data show that this gene therapy approach targeted at the interface membrane around a loosened hip prosthesis is a feasible treatment option for elderly patients for whom surgical intervention is not appropriate.
Type 1 diabetes is an autoimmune disease characterized by autoreactive T-cell mediated destruction of the insulin-producing pancreatic beta-cells. Increasing evidence suggest that the beta-cells themselves contribute to their own destruction by generating neo-antigens through the production of aberrant or modified proteins that escape central tolerance. We have recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human beta-cells, emphasizing the participation of nonconventional translation events to autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human beta-cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from non-canonical start sites and translation initiation within lncRNA. Our data underline the extreme diversity of the beta-cell translatome and may reveal new functional biomarkers for beta-cell distress, disease prediction and progression and therapeutic intervention in type 1 diabetes.
Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected.We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation.Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable.
The efficacy of adenovirus (Ad)-based gene therapy of solid tumors, such as prostate cancer, is limited. One of the many problems is that the virus infects many different cell types in the body, resulting in high toxicity, whereas the target cancer cells are often less prone to wild-type Ad infection. Our aim was to develop genetically de- and retargeted Ad vectors to reduce off-target effects and increase target infection for prostate cancer. We have previously reported an Ad5 vector specific for the cancer-associated receptor Her2/neu, created by inserting Her2/neu-reactive Affibody® molecules (ZH) into the HI loop of a coxsackievirus and adenovirus receptor binding-ablated fiber (Ad[ZH/1]). In addition to virus retargeting to Her2/neu, this virus was further modified from wild-type Ad by changing the RGD motif in the penton base to EGD and by substitution of the KKTK motif in the third shaft repeat to RKSK, resulting in the vector Ad[ZH/3]. The ZH-containing vectors could be produced to high titers and were specific for their target, resulting in efficient infection and killing of Her2/neu-positive androgen-dependent PC346C prostate cancer cells in vitro. Here we show that the oncolytic Ad[ZH/3] vector significantly prolonged survival time and reduced serum prostate-specific antigen levels in an orthotopic prostate tumor model in nude mice to the same extent as wild-type Ad5. Our results show that Her2/neu targeting using Ad-based vectors for prostate cancer is feasible and may serve as a basis for the development of gene therapy of human prostate cancer as well as other Her2/neu-expressing cancers. Magnusson and colleagues have developed an Ad5 vector specific for the cancer-associated receptor Her2/neu and show that it can efficiently infect and kill Her2/neu-positive androgen-dependent PC346C prostate cancer cells in vitro. They also show that this vector can significantly prolong survival time and reduce serum prostate-specific antigen levels in an orthotopic prostate tumor mouse model.