Abstract Hydrologically mediated hot moments (HM‐HMs) of transient anomalous diffusion (TAD) denote abrupt shifts in hydraulic conditions that can profoundly influence the dynamics of anomalous diffusion for pollutants within heterogeneous aquifers. How to efficiently model these complex dynamics remains a significant challenge. To bridge this knowledge gap, we propose an innovative model termed “the impulsive, tempered fractional advection‐dispersion equation” (IT‐fADE) to simulate HM‐HMs of TAD. The model is approximated using an L1‐based finite difference solver with unconditional stability and an efficient convergence rate. Application results demonstrate that the IT‐fADE model and its solver successfully capture TAD induced by hydrologically trigged hot phenomena (including hot moments and hot spots) across three distinct aquifers: (a) transient sub‐diffusion arising from sudden shifts in hydraulic gradient within a regional‐scale alluvial aquifer, (b) transient sub‐ or super‐diffusion due to convergent or push‐pull tracer experiments within a local‐scale fractured aquifer, and (c) transient sub‐diffusion likely attributed to multiple‐conduit flow within an intermediate‐scale karst aquifer. The impulsive terms and fractional differential operator integrated into the IT‐fADE aptly capture the ephemeral nature and evolving memory of HM‐HMs of TAD by incorporating multiple stress periods into the model. The sequential HM‐HM model also characterizes breakthrough curves of pollutants as they encounter hydrologically mediated, parallel hot spots. Furthermore, we delve into discussions concerning model parameters, extensions, and comparisons, as well as impulse signals and the propagation of memory within the context of employing IT‐fADE to capture hot phenomena of TAD in aquatic systems.
Global food systems rely on irrigated agriculture, and most of these systems in turn depend on fresh sources of groundwater. In this study, we demonstrate that groundwater development, even without overdraft, can transform a fresh, open basin into an evaporation dominated, closed-basin system, such that most of the groundwater, rather than exiting via stream baseflow and lateral subsurface flow, exits predominantly by evapotranspiration from irrigated lands. In these newly closed hydrologic basins, just as in other closed basins, groundwater salinization is inevitable because dissolved solids cannot escape, and the basin is effectively converted into a salt sink. We first provide a conceptual model of this process, called “nthropogenic asin losure and groundwater inization” (ABCSAL). We then examine the temporal dynamics of ABCSAL using the Tulare Lake Basin, California, as a case study for a large irrigated agricultural region with Mediterranean climate, overlying an unconsolidated sedimentary aquifer system. Even with modern water management practices that arrest historic overdraft, results indicate that shallow aquifers (36 m deep) exceed maximum contaminant levels for total dissolved solids on decadal timescales. Intermediate (132 m) and deep aquifers (187 m), essential for drinking water and irrigated crops, are impacted within two to three centuries. Hence, ABCSAL resulting from groundwater development in agricultural regions worldwide constitutes a largely unrecognized constraint on groundwater sustainable yield on similar timescales to aquifer depletion, and poses a serious challenge to global groundwater quality sustainability, even where water levels are stable.
Global food systems rely on irrigated agriculture, and most of these systems in turn depend on fresh sources of groundwater. In this study, we demonstrate that groundwater development, even without overdraft, can transform a fresh, open basin into an evaporation dominated, closed-basin system, such that most of the groundwater, rather than exiting via stream baseflow and lateral subsurface flow, exits predominantly by evapotranspiration from irrigated lands. In these newly closed hydrologic basins, just as in other closed basins, groundwater salinization is inevitable because dissolved solids cannot escape, and the basin is effectively converted into a salt sink. We first provide a conceptual model of this process, called "Anthropogenic Basin Closure and groundwater SALinization" (ABCSAL). We examine the temporal dynamics of ABCSAL using the Tulare Lake Basin, California, as a case study for a large irrigated agricultural region with Mediterranean climate, overlying an unconsolidated sedimentary aquifer system. Even with modern water management practices that arrest historic overdraft, results indicate that shallow aquifers (36 m deep) exceed maximum contaminant levels for total dissolved solids on decadal timescales. Intermediate (132 m) and deep aquifers (187 m), essential for drinking water and irrigated crops, are impacted within two to three centuries. Hence, ABCSAL resulting from groundwater development constitutes a largely unrecognized constraint on groundwater sustainable yield on similar timescales to aquifer depletion in the Tulare Lake Basin, and poses a serious challenge to groundwater quality sustainability, even when water levels are stable. Results suggest that agriculturally intensive groundwater basins worldwide may be susceptible to ABCSAL.
The purpose of this study is to investigate the effects of well-field hydraulics and permeability heterogeneity on mass-removal efficiency for systems comprising large groundwater contaminant plumes. A three-dimensional (3D) numerical model was used to simulate the impact of different well-field configurations on pump-and-treat mass removal for heterogeneous domains. The relationship between reduction in contaminant mass discharge (CMDR) and mass removal (MR) was used as the metric to examine remediation efficiency. The impacts of well-field configuration on mass removal behavior are attributed to mass-transfer constraints related to regions of low flow associated with the well field, which can be muted by the influence of permeability heterogeneity. These impacts are reflected in the associated CMDR-MR profiles. Systems whose CDMR-MR profiles are below the 1:1 relationship line are associated with more efficient well-field configurations. The impact of domain heterogeneity on mass-removal effectiveness was investigated in terms of both variance and correlation scale of the random permeability distributions and indexed by the CMDR-MR relationship. Data collected from pump-and-treat operations conducted in a section of the Tucson International Airport Area (TIAA) federal Superfund site were used as a case study. The comparison between simulated and measured site data supports the general validity of the numerical model, and results from the case study are consistent with the conclusions of the theoretical study. These results illustrate that the CMDR-MR relationship can be an effective way to quantify the impacts of different factors on mass-removal efficiency.
Abstract Since Reform and Opening-up, China’s economy has been developing rapidly and per capita GDP has been raising. However, along with the rapid development of the economy, the problem of air pollution such as haze becomes increasingly serious, which has seriously affected the health of residents and the sustainable development of the economy. In this paper, we adopt spatial econometrics to explore the relationship between socio-economic factors and haze pollution. Firstly, there is significant spatial autocorrelation in haze pollution. Secondly, population, coal consumption and urbanization have positive and significant impacts on haze pollution. In this regard, governments should coordinate economic growth with environmental protection, balance the relationship between economic growth and environmental pollution.
A three-dimensional numerical model was used to simulate the impact of different well-field configurations on pump-and-treat mass removal efficiency for large groundwater contaminant plumes residing in homogeneous and layered domains. Four well-field configurations were tested, Longitudinal, Distributed, Downgradient, and natural gradient (with no extraction wells). The reductions in contaminant mass discharge (CMDR) as a function of mass removal (MR) were characterized to assess remediation efficiency. Systems whose CDMR-MR profiles are below the 1:1 relationship curve are associated with more efficient well-field configurations. For simulations conducted with the homogeneous domain, the CMDR-MR curves shift leftward, from convex-downward profiles for natural gradient and Longitudinal to first-order behaviour for Distributed, and further leftward to a sigmoidal profile for the Downgradient well-field configuration. These results reveal the maximum potential impacts of well-field configuration on mass-removal behaviour, which is attributed to mass-transfer constraints associated with regions of low flow. In contrast, for the simulations conducted with the layered domain, the CMDR-MR relationships for the different well-field configurations exhibit convex-upward profiles. The nonideal mass-removal behaviour in this case is influenced by both well-field configuration and back diffusion associated with low-permeability units.