BACKGROUND Inherited and acquired marrow failure syndromes most commonly lead to defect in myeloid and/or neutrophil differentiation and/or function. Besides this, neutropenia induced by cancer‐adjusted chemotherapy is a frequent clinical problem. In both cases, cell replacement therapy is a well‐established, but due to necessity of donors limited and perilous procedure. Therefore, autologous cell replacement from patients' own marrow‐derived cells lowers risk and bares new possibilities for therapy. Since the immune system of the marmoset monkey is known to show high similarity to humans, preclinical studies with these animals bare high hopes for immunologic research and cell replacement therapy. STUDY DESIGN AND METHODS Marmoset‐induced pluripotent stem (iPS) cells (cj‐iPSC) were first cultivated on mouse embryonic feeder cells in medium containing recombinant human vascular endothelial growth factor. After 13 days, CD34+/vascular endothelial growth factor receptor‐2 (VEGFR2)– cells were sorted, treated with interleukin (IL‐3), thrombopoietin, and stem cell factor for 20 days and further cultivated with granulocyte–colony‐stimulating factor (G‐CSF) and IL‐3 for 10 days. RESULTS CD34+/VEGFR2– cells could be generated in high amounts (39.65 ± 6.01%; 2.31 × 10 5 cells). Afterward, these hematopoietic progenitors could be successfully differentiated into mature cj‐iPSC–derived neutrophils showing similar morphology, specific surface antigens, and neutrophil‐specific gene products and in vitro phagocytic activity. CONCLUSION cj‐iPSC–derived neutrophils bare high hopes in hematologic cell replacement therapy. They exhibit high morphologic similarity to native neutrophils and present neutrophil‐specific surface antigens, antimicrobial proteins, and gene products yielding an auspicious approach for continuative experiments including tests in living animals.
Hintergrund Eine geringe Diffusionsbarriere ist essentiell für die Funktion des pulmonalen Gasaustausches. Sowohl bei der alveolären kapillären Dysplasie (ACD) als auch bei der nicht-spezifischen interstitiellen Pneumonie (NSIP) ist diese Funktion kompromittiert durch einen Gewebsumbau an der Schnittstelle von Alveole und Kapillare. Eine direkte molekulare Gegenüberstellung dieser beiden Erkrankungen ist bislang nicht erfolgt.
ABSTRACT To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, in a process thought to be error-free, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in CNS myelin during development by combining ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia in a phosphatidylserine-dependent manner. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that requires substantial refinement.
Abstract Background Interstitial lung disease occurring in children is a condition characterized by high frequency of cases due to genetic aberrations of pulmonary surfactant homeostasis, that are also believed to be responsible of a fraction of familial pulmonary fibrosis. To our knowledge, ABCA3 gene was not previously reported as causative agent of fibrosis affecting both children and adults in the same kindred. Methods We investigated a large kindred in which two members, a girl whose interstitial lung disease was first recognized at age of 13, and an adult, showed a diffuse pulmonary fibrosis with marked differences in terms of morphology and imaging. An additional, asymptomatic family member was detected by genetic analysis. Surfactant abnormalities were investigated at biochemical, and genetic level, as well as by cell transfection experiments. Results Bronchoalveolar lavage fluid analysis of the patients revealed absence of surfactant protein C, whereas the gene sequence was normal. By contrast, sequence of the ABCA3 gene showed a novel homozygous G > A transition at nucleotide 2891, localized within exon 21, resulting in a glycine to aspartic acid change at codon 964. Interestingly, the lung specimens from the girl displayed a morphologic usual interstitial pneumonitis-like pattern, whereas the specimens from one of the two adult patients showed rather a non specific interstitial pneumonitis-like pattern. Conclusions We have detected a large kindred with a novel ABCA3 mutation likely causing interstitial lung fibrosis affecting either young and adult family members. We suggest that ABCA3 gene should be considered in genetic testing in the occurrence of familial pulmonary fibrosis.
ABSTRACT The cell wall of monoderm bacteria consists of peptidoglycan and glycopolymers in roughly equal proportions and is crucial for cellular integrity, cell shape, and bacterial vitality. Despite the immense value of Streptomyces in biotechnology and medicine as antibiotic producers, we know very little about their cell wall biogenesis, composition, and functions. Here, we have identified the LCP-LytR_C domain protein CglA (Vnz_13690) as a key glycopolymer ligase , which specifically localizes in zones of cell wall biosynthesis in S. venezuelae . Reduced amount of glycopolymers in the cglA mutant results in enlarged vegetative hyphae and failures in FtsZ-rings formation and positioning. Consequently, division septa are misplaced leading to the formation of aberrant cell compartments, misshaped spores, and reduced cell vitality. In addition, we report our discovery that c-di-AMP signaling and decoration of the cell wall with glycopolymers are physiologically linked in Streptomyces since the deletion of cglA restores growth of the S. venezuelae disA mutant at high salt. Altogether, we have identified and characterized CglA as a novel component of cell wall biogenesis in Streptomyces , which is required for cell shape maintenance and cellular vitality in filamentous, multicellular bacteria. IMPORTANCE Streptomyces are our key producers of antibitiotics and other bioactive molecules and are, therefore, of high value for medicine and biotechnology. They proliferate by apical extension and branching of hyphae and undergo complex cell differentiation from filaments to spores during their life cycle. For both, growth and sporulation, coordinated cell wall biogenesis is crucial. However, our knowledge about cell wall biosynthesis, functions, and architecture in Streptomyces and in other Actinomycetota is still very limited. Here, we identify CglA as the key enzyme needed for the attachment of glycopolymers to the cell wall of S. venezuelae . We demonstrate that defects in the cell wall glycopolymer content result in loss of cell shape in these filamentous bacteria and show that division-competent FtsZ-rings cannot assemble properly and fail to be positioned correctly. As a consequence, cell septa placement is disturbed leading to the formation of misshaped spores with reduced viability.
Abstract The Sertoli cell (SC)-specific knockout (KO) of connexin43 (Cx43) was shown to be an effector of multiple histological changes in tubular morphology, resulting in germ cell loss through to a Sertoli-cell-only (SCO) phenotype and vacuolated seminiferous tubules containing SC-clusters. Our present study focused on the effects of Cx43 loss on SC ultrastructure. Using serial block-face scanning electron microscopy (SBF-SEM), we could confirm previous results. Ultrastructural analysis of Sertoli cell nuclei (SCN) revealed that these appear in clusters with a phenotype resembling immature/proliferating SCs in KO mice. Surprisingly, SCs of fertile wild type (WT) mice contained SCN with a predominantly smooth surface instead of deep indentations of the nuclear envelope, suggesting that these indentations do not correlate with germ cell support or spermatogenesis. SBF-SEM facilitated the precise examination of clustered SCs. Even if the exact maturation state of mutant SCs remained unclear, our study could detect indications of cellular senescence as well as immaturity, emphasising that Cx43 affects SC maturation. Moreover, Sudan III staining and transmission electron microscopy (TEM) demonstrated an altered lipid metabolism in SCs of Cx43 deficient mice.
Thin type 1 alveolar epithelial (AE1) and surfactant producing type 2 alveolar epithelial (AE2) cells line the alveoli in the lung and are essential for normal lung function. Function is intimately interrelated to structure, so that detailed knowledge of the epithelial ultrastructure can significantly enhance our understanding of its function. The basolateral surface of the cells or the epithelial contact sites are of special interest, because they play an important role in intercellular communication or stabilizing the epithelium. The latter is in particular important for the lung with its variable volume. The aim of the present study was to investigate the three-dimensional (3D) ultrastructure of the human alveolar epithelium focusing on contact sites and the basolateral cell membrane of AE2 cells using focused ion beam electron microscopy and subsequent 3D reconstructions. The study provides detailed surface reconstructions of two AE1 cell domains and two AE2 cells, showing AE1/AE1, AE1/AE2 and AE2/AE2 contact sites, basolateral microvilli pits at AE2 cells and small AE1 processes beneath AE2 cells. Furthermore, we show reconstructions of a surfactant secretion pore, enlargements of the apical AE1 cell surface and long folds bordering grooves on the basal AE1 cell surface. The functional implications of our findings are discussed. These findings may lay the structural basis for further molecular investigations.
Endosymbionts in marine bivalves leave characteristic biosignatures in their host organisms. Two nonseep bivalve species collected in Mediterranean lagoons, thiotrophic symbiotic Loripes lacteus and filter-feeding nonsymbiotic Venerupis aurea, were studied in detail with respect to generation and presence of such signatures in living animals, and the preservation of these signals in subfossil (late Pleistocene) sedimentary shells. Three key enzymes from sulfur oxidation (APS-reductase), CO(2) fixation (RubisCO) and assimilation of nitrogen [glutamine synthetase (GS)] were detected by immunofluorescence in the bacterial symbionts of Loripes. In Loripes, major activity was derived from GS of the symbionts whereas in Venerupis the host GS is active. In search of geologically stable biosignatures for thiotrophic chemosymbiosis that might be suitable to detect such associations in ancient bivalves, we analyzed the isotopic composition of shell lipids (δ(13)C) and the bulk organic matrix of the shell (δ(13)C , δ(15)N , δ(34)S). In the thiotrophic Loripes, δ(13)C values were depleted compared with the filter-feeding Venerupis by as much as 8.5‰ for individual fatty acids, and 4.4‰ for bulk organic carbon. Likewise, bulk δ(15)N and δ(34)S values were more depleted in recent thiotrophic Loripes. Whereas δ (34)S values were found to be unstable over time, the combined δ(15)N and δ(13)C values in organic shell extracts revealed a specific signature for chemosymbiosis in recent and subfossil specimens.