Abstract The liver and pancreas work together to recover homeostasis after hepatectomy. This study aimed to investigate the effect of liver resection volume on the pancreas. We collected clinical data from 336 living liver donors. They were categorized into left lateral sectionectomy (LLS), left lobectomy, and right lobectomy (RL) groups. Serum pancreatic enzymes were compared among the groups. Serum amylase values peaked on postoperative day (POD) 1. Though they quickly returned to preoperative levels on POD 3, 46% of cases showed abnormal values on POD 7 in the RL group. Serum lipase levels were highest at POD 7. Lipase values increased 5.7-fold on POD 7 in the RL group and 82% of cases showed abnormal values. The RL group’s lipase was twice that of the LLS group. A negative correlation existed between the remnant liver volume and amylase (r = − 0.326)/lipase (r = − 0.367) on POD 7. Furthermore, a significant correlation was observed between POD 7 serum bilirubin and amylase (r = 0.379)/lipase (r = 0.381) levels, indicating cooccurrence with liver and pancreatic strain. Pancreatic strain due to hepatectomy occurs in a resection/remnant liver volume-dependent manner. It would be beneficial to closely monitor pancreatic function in patients undergoing a major hepatectomy.
LT for small infants weighing <5 kg with liver failure might require innovative techniques for size reduction and transplantation of small grafts to avoid large-for-size graft, but little is known about post-transplant graft volumetric changes. Five of 172 children who underwent LDLT received monosegment or reduced monosegment grafts using a modified Couinaud's segment II (S2) graft for LDLT. Serial CT was used to evaluate the changes in the GV and other factors before LDLT and one and three months after LDLT. The shape of these grafts was classified into an OL type and an LL type. The GV increased in all patients one month after LDLT, whereas the GV decreased three months after LDLT in OL in comparison with one month after LDLT. The GRWR of the OL type has tended to decrease at three months, whereas the LL type showed a continuous increase with time, but finally they had adapted graft size for their body size. In conclusion, the volume of S2 grafts after LDLT had unique changes toward the ideal volume for the child weight when they received the appropriate liver volume.
We aimed to predict in vitro chemosensitivity assay results from computed tomography (CT) images by applying deep learning (DL) to optimize chemotherapy for pancreatic ductal adenocarcinoma (PDAC).
Perineural invasion (PNI) is a characteristic invasion pattern of distal cholangiocarcinoma (DCC). Conventional histopathologic examination is a challenging approach to analyze the spatial relationship between cancer and neural tissue in full-thickness bile duct specimens. Therefore, we used a tissue clearing method to examine PNI in DCC with three-dimensional (3D) structural analysis. The immunolabeling-enabled 3D imaging of solvent-cleared organs method was performed to examine 20 DCC specimens from five patients and 8 non-neoplastic bile duct specimens from two controls. The bile duct epithelium and neural tissue were labeled with CK19 and S100 antibodies, respectively. Two-dimensional hematoxylin/eosin staining revealed only PNI around thick nerve fibers in the deep layer of the bile duct, whereas PNI was not identified in the superficial layer. 3D analysis revealed that the parts of DCC closer to the mucosa exhibited more nerves than the normal bile duct. The nerve fibers were continuously branched and connected with thick nerve fibers in the deep layer of the bile duct. DCC formed a tubular structure invading from the epithelium and extending around thin nerve fibers in the superficial layer. DCC exhibited continuous infiltration around the thick nerve fibers in the deep layer. This is the first study using a tissue clearing method to examine the PNI of DCC, providing new insights into the underlying mechanisms.