Biliary atresia (BA) is an immune-related disorder and signal transducer and activator of transcription 3 (STAT3) is a key signalling molecule in inflammation. The present study was designed to clarify the function of STAT3 in BA. STAT3 expression was examined in patients and a mouse BA model in which STAT3 levels were further altered with a specific inhibitor or activator. Neutrophil accumulation and the levels of the neutrophil chemoattractants (C-X-C motif) ligand 1 (CXCL1) and IL-8 were determined. The effects of STAT3 inhibition on IL-8 expression were examined in human biliary epithelial cell (BEC) cultures. Functional changes in liver STAT3+ neutrophils in the mouse model were analysed with 10× single cell RNA-seq methods. Results showed STAT3 and p-STAT3 expression was reduced in BA liver tissue compared with control samples. Administration of a STAT3 inhibitor increased jaundice and mortality and reduced body weight in BA mice. In contrast, the STAT3 activator ameliorated BA symptoms. Extensive neutrophil accumulation together with CXCL1 up-regulation, both of which were suppressed by an anti-CXCL1 antibody, were observed in the STAT3 inhibitor-treated group. Recombinant IL-8 administration increased disease severity in BA mice, and the STAT3 activator had the reverse effect. Inhibiting STAT3 increased apoptosis of human BECs together with up-regulated IL-8 expression. RNA-seq analysis revealed reduced the numbers of STAT3 expressing neutrophil in BA which was accompanied by marked enhanced interferon-related antiviral activities. In conclusion, STAT3 reduction, enhanced IL-8 and CXCL1 expression and promoted the accumulation of interferon-responsive neutrophils resulting in BEC damage in BA.
To identify the original components of Asini Colla Corii and its raw material hides provides a guarantee for authenticity of Asini Colla Corii. It is urgent for Asini Colla Corii production enterprises and market supervision departments to develop effective identification methods of Asini Colla Corii and hides derived from horses, donkeys, mules and hinnies. This study screened species-specific DNA sequences of nuclear and mitochondrial genomes as detection targets, designed horse and donkey specific primers and established multiple PCR identification methods for identifying the animal hides (including the horse, donkey, mule and hinny) and Asini Colla Corii containing horse-derived and donkey-derived components. Our method can identify the horse, donkey, mule and hinny hides and horse, donkey-derived components of Asini Colla Corii with high species specificity (no crossed amplification was observed ). The limit of detection was 0.2 ng DNA. The method developed in this study provides technical support for Asini Colla Corii production enterprises and market supervision departments.
We have previously reported on the potential pathogenic role of neutrophils in biliary atresia (BA). Herein, we aimed to delineate the role of CD177+ neutrophils in the pathogenesis of BA.Immune cells from the livers of mice with rhesus rotavirus-induced BA were analysed. Single-cell RNA-sequencing was performed to specifically analyse Gr-1+ (Ly6C/Ly6G+) cells in the liver. Gene expression profiles of CD177+ cells were analysed using the Smart-Seq RNA-sequencing method, and the pathogenesis of BA was examined in Cd177-/- mice. Neutrophil extracellular trap (NET) inhibitors were used to determine the role of CD177+ cell-derived NETs in BA-associated bile duct damage, and a pilot clinical study evaluated the potential effects of N-acetylcysteine on NET release in BA.Increased levels of Gr-1+ cells were observed in the livers of mice with rhesus rotavirus-induced BA. RNA-sequencing analysis revealed that CD177+ cells were the main population of Gr-1+ cells and expressed elevated levels of both interferon-stimulated and neutrophil degranulation genes. Cd177-/- BALB/c mice exhibited delayed disease onset and reduced morbidity and mortality. High numbers of mitochondria were detected in CD177+ cells derived from mice with BA; these cells were associated with increased levels of reactive oxygen species and increased NET formation, which induced the apoptosis of biliary epithelial cells in cocultures. In a pilot clinical study, the administration of N-acetylcysteine to patients with BA reduced CD177+ cell numbers and reactive oxygen species levels, indicating a potential beneficial effect.Our data indicate that CD177+ cells play an important role in the initiation of BA pathogenesis via NET formation.The pilot study of N-acetylcysteine treatment in patients with BA was registered on the Chinese Clinical Trial Registry (ChiCTR2000040505).Neutrophils (a type of innate immune cell, i.e. an immune cell that doesn't target a specific antigen) are thought to play a role in the development of biliary atresia (a rare but potentially lethal condition of the bile ducts that occurs in infants). Herein, we found that neutrophils expressing a particular protein (CD177) played an important role in bile duct damage by releasing a special structure (NET) that can trap and kill pathogens but that can also cause severe tissue damage. A pilot study in patients with biliary atresia showed that inhibiting NETs could have a beneficial effect.
Peripherally inserted central venous catheters (PICCs) are widely used in cardiology because they are convenient, effective, and safe. However, PICC implantation in patients with mirror-image dextrocardia who have thoracic tumors has not yet been reported. In this case report, we describe a 46-year-old patient with lung cancer who had a thoracic inclination and left pulmonary artery compression of the superior vena cava. PICC implantation under B-ultrasound guidance was planned. Because of the anatomical differences caused by mirror-image dextrocardia, we investigated the optimal position and measurement method for the tip of the PICC according to the compression site of the vascular lumen through a multidisciplinary team approach. Electrocardiography-assisted tip positioning combined with postoperative chest X-ray positioning was performed for accurate positioning.
There is a lack of an HSV-2 vaccine, in part as the result of various factors that limit robust and long-term memory immune responses at the mucosal portals of viral entry. We previously demonstrated that chemokine CCL19 augmented mucosal and systemic immune responses to HIV-1 envelope glycoprotein. Whether such enhanced immunity can protect animals against virus infection remains to be addressed. We hypothesized that using CCL19 in a fusion form to direct an immunogen to responsive immunocytes might have an advantage over CCL19 being used in combination with an immunogen. We designed two fusion constructs, plasmid (p)gBIZCCL19 and pCCL19IZgB, by fusing CCL19 to the C- or N-terminal end of the extracellular HSV-2 glycoprotein B (gB) with a linker containing two (Gly4Ser)2 repeats and a GCN4-based isoleucine zipper motif for self-oligomerization. Following immunization in mice, pgBIZCCL19 and pCCL19IZgB induced strong gB-specific IgG and IgA in sera and vaginal fluids. The enhanced systemic and mucosal Abs showed increased neutralizing activity against HSV-2 in vitro. Measurement of gB-specific cytokines demonstrated that gB-CCL19 fusion constructs induced balanced Th1 and Th2 cellular immune responses. Moreover, mice vaccinated with fusion constructs were well protected from intravaginal lethal challenge with HSV-2. Compared with pgB and pCCL19 coimmunization, fusion constructs increased mucosal surface IgA(+) cells, as well as CCL19-responsive immunocytes in spleen and mesenteric lymph nodes. Our findings indicate that enhanced humoral and cellular immune responses can be achieved by immunization with an immunogen fused to a chemokine, providing information for the design of vaccines against mucosal infection by HSV-2 and other sexually transmitted viruses.
Neural cell apoptosis serves a key role in spinal cord injury (SCI), which is a threat to human health. The present study aimed to evaluate the neuroprotective mechanism of salvianolic acid B (Sal B) in a spinal cord injury (SCI) rat model. Basso, Beattie, and Bresnahan scores demonstrated that Sal B treatment significantly increased locomotor functional recovery in SCI rats compared with SCI model rats between 3 and 8 weeks. Nissl staining demonstrated that Sal B enhanced motor neuron survival and decreased lesion size after SCI. Reverse transcription-quantitative PCR analysis demonstrated that Sal B treatment significantly enhanced the mRNA levels of lymphoid enhancer biding factor-1 and HNF1 homeobox A. In addition, Sal B treatment enhanced the expression of β-catenin. Western blot analysis determined that Sal B treatment significantly decreased the expression of pro-apoptosis proteins, including Bax, cleaved caspase-3 and -9, in spinal cord tissues after SCI but enhanced the expression of Bcl-2, an anti-apoptotic protein. Furthermore, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining demonstrated that, compared with the SCI group, Sal B treatment decreased the number of TUNEL-positive neurons. In summary, the present study produced novel data demonstrating the neuroprotective effect of Sal B on SCI with the mechanism likely primarily mediated via the Wnt/β-catenin signaling pathway. The present findings may be of potential therapeutic value for future SCI treatments.
Long noncoding RNAs (lncRNAs) play important roles in stem cell differentiation. However, their role in osteogenesis of human adipose-derived stem cells (ASCs), a promising cell source for bone regeneration, remains unknown. Here, we investigated the expression profile and potential roles of lncRNAs in osteogenic differentiation of human ASCs.Human ASCs were induced to differentiate into osteoblasts in vitro, and the expression profiles of lncRNAs and mRNAs in undifferentiated and osteogenic differentiated ASCs were obtained by microarray. Bioinformatics analyses including subgroup analysis, gene ontology analysis, pathway analysis and co-expression network analysis were performed. The function of lncRNA H19 was determined by in vitro knockdown and overexpression. Quantitative reverse transcription polymerase chain reaction was utilized to examine the expression of selected genes.We identified 1,460 upregulated and 1,112 downregulated lncRNAs in osteogenic differentiated human ASCs as compared with those of undifferentiated cells (Fold change ≥ 2.0, P < 0.05). Among these, 94 antisense lncRNAs, 85 enhancer-like lncRNAs and 160 lincRNAs were further recognized. We used 12 lncRNAs and 157 mRNAs to comprise a coding-non-coding gene expression network. Additionally, silencing of H19 caused a significantly increase in expression of osteogenesis-related genes, including ALPL and RUNX2, while a decrease was observed after H19 overexpression.This study revealed for the first time the global expression profile of lncRNAs involved in osteogenic differentiation of human ASCs and provided a foundation for future investigations of lncRNA regulation of human ASC osteogenesis.
Abstract Backgrounds: Biliary atresia (BA) is a very rare neonatal disease, however, it has been the most common cause of obstructive jaundice in infancy. The complex pathogenesis of BA is not entirely clear and a lot of possible pathogenic mechanisms have been proposed to explain the etiology of BA, including genetic, inflammatory, environmental and developmental abnormalities. As a transcription factor, USF2 gene rs916145 polymorphism has been shown to be related to the risk of BA. Methods: We examined the USF2 rs916145 genotype in a large case–control study consisting of 506 BA patients and 1473 healthy controls, using the MassARRAY iPLEX Gold system (Sequenom). Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the association between the USF2 gene rs916145 polymorphism and BA susceptibility. Results: The frequency of different genotypes showed no statistical significance (GG/GC, OR: 1.09, P=0.470, 95% CI: 0.87–1.35; GG/CC, OR: 0.86, P=0.378, 95% CI: 0.62–1.20). No obvious association was revealed between the USF2 gene rs916145 polymorphism and BA susceptibility. Conclusion: USF2 rs916145 polymorphism may not be the best predictor of BA.