The substituted thieno[2,3-d]pyrimidine 3 (Org 41841), a partial agonist for the luteinizing hormone/choriogonadotropin receptor (LHCGR) and the closely related thyroid-stimulating hormone receptor (TSHR), was fundamentally altered, and the resulting analogues were analyzed for their potencies, efficacies, and specificities at LHCGR and TSHR. Chemical modification of the parent compound combined with prior mutagenesis of TSHR provided compelling experimental evidence in support of computational models of 3 binding to TSHR and LHCGR within their transmembrane cores. Biochemical analysis of a specific modification to the chemical structure of 3 provides additional evidence of a H-bond between the ligand and a glutamate residue in transmembrane helix 3, which is conserved in both receptors. Several key interactions were surveyed to determine their respective biochemical roles in terms of both van der Waals dimensions and hydrogen bond capacity and the respective relationship to biological activity.
Small ligands generally bind within the seven transmembrane-spanning helices of G-protein-coupled receptors, but their access to the binding pocket through the closely packed loops has not been elucidated. In this work, a model of the extracellular loops of the thyrotropin-releasing hormone (TRH) receptor (TRHR) was constructed, and molecular dynamics simulations and quasi-harmonic analysis have been performed to study the static and dynamic roles of the extracellular domain. The static analysis based on curvature and electrostatic potential on the surface of TRHR suggests the formation of an initial recognition site between TRH and the surface of its receptor. These results are supported by experimental evidence. A quasi-harmonic analysis of the vibrations of the extracellular loops suggest that the low-frequency motions of the loops will aid the ligand to access its transmembrane binding pocket. We suggest that all small ligands may bind sequentially to the transmembrane pocket by first interacting with the surface binding site and then may be guided into the transmembrane binding pocket by fluctuations in the extracellular loops.
Glycoprotein hormone receptors (provisional nomenclature [47]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [122, 31].
Abstract Human islet-derived precursor cells (hIPCs), mesenchymal cells derived in vitro from adult pancreas, proliferate freely and do not express insulin but can be differentiated to epithelial cells that express insulin. hIPCs have been studied with the goal of obtaining large quantities of insulin-producing cells suitable for transplantation into patients suffering from type 1 diabetes. It appeared that undifferentiated hIPCs are “committed” to a pancreatic endocrine phenotype through multiple cell divisions, suggesting that epigenetic modifications at the insulin locus could be responsible. We determined patterns of histone modifications over the insulin gene in human islets and hIPCs and compared them with HeLa and human bone marrow-derived mesenchymal stem cells (hBM-MSCs), neither of which expresses insulin. The insulin gene in islets displays high levels of histone modifications (H4 hyperacetylation and dimethylation of H3 lysine 4) typical of active genes. These are not present in HeLa and hBM-MSCs, which instead have elevated levels of H3 lysine 9 dimethylation, a mark of inactive genes. hIPCs, in contrast, show significant levels of active chromatin modifications, as much as half those seen in islets, and show no measurable H3 K9 methylation. Cells expanded from a minor population of mesenchymal stromal cells found in islets exhibit the same histone modifications as established hIPCs. We conclude that hIPCs, which do not express the insulin gene, nonetheless uniquely exhibit epigenetic marks that could poise them for activation of insulin expression. This epigenetic signature may be a general mechanism whereby tissue-derived precursor cells are committed to a distinct specification. Disclosure of potential conflicts of interest is found at the end of this article.
Thyrotropin (TSH) activation of the TSH receptor (TSHR), a 7-transmembrane-spanning receptor (7TMR), may have osteoprotective properties by direct effects on bone. TSHR activation by TSH phosphorylates protein kinases AKT1, p38α, and ERK1/2 in some cells. We found TSH-induced phosphorylation of these kinases in 2 cell lines engineered to express TSHRs, human embryonic kidney HEK-TSHR cells and human osteoblastic U2OS-TSHR cells. In U2OS-TSHR cells, TSH up-regulated pAKT1 (7.1±0.5-fold), p38α (2.9±0.4-fold), and pERK1/2 (3.1 ±0.2-fold), whereas small molecule TSHR agonist C2 had no or little effect on pAKT1 (1.8±0.08-fold), p38α (1.2±0.09-fold), and pERK1/2 (1.6±0.19-fold). Furthermore, TSH increased expression of osteoblast marker genes ALPL (8.2±4.6-fold), RANKL (21±5.9-fold), and osteopontin (OPN; 17±5.3-fold), whereas C2 had little effect (ALPL, 1.7±0.5-fold; RANKL, 1.3±0.6-fold; and OPN, 2.2±0.7-fold). β-Arrestin-1 and -2 can mediate activatory signals by 7TMRs. TSH stimulated translocation of β-arrestin-1 and -2 to TSHR, whereas C2 failed to translocate either β-arrestin. Down-regulation of β-arrestin-1 by siRNA inhibited TSH-stimulated phosphorylation of ERK1/2, p38α, and AKT1, whereas down-regulation of β-arrestin-2 increased phosphorylation of AKT1 in both cell types and of ERK1/2 in HEK-TSHR cells. Knockdown of β-arrestin-1 inhibited TSH-stimulated up-regulation of mRNAs for OPN by 87 ± 1.7% and RANKL by 73 ± 2.4%, and OPN secretion by 74 ± 10%. We conclude that TSH enhances osteoblast differentiation in U2OS cells that is, in part, caused by activatory signals mediated by β-arrestin-1.—Boutin, A., Eliseeva, E., Gershengorn, M. C., Neumann, S. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation. FASEB J. 28, 3446–3455 (2014). www.fasebj.org
The conformational changes at the cytoplasmic ends of transmembrane helices 5 and 6 (TMH5 and TMH6) of thyrotropin-releasing hormone (TRH) receptor type I (TRH-R1) during activation were analyzed by cysteine-scanning mutagenesis followed by disulfide cross-linking and molecular modeling. Sixteen double cysteine mutants were constructed by substitution of one residue at the cytoplasmic end of TMH5 and the other at that of TMH6. The cross-linking experiments indicate that four mutants, Q263C/G212C, Q263C/Y211C, T265C/G212C, and T265C/Y211C, exhibited disulfide bond formation that was sensitive to TRH occupancy. We refined our previous TRH-R1 models by embedding them into a hydrated explicit lipid bilayer. Molecular dynamics simulations of the models, as well as in silico double cysteine models, generated trajectories that were in agreement with experimental results. Our findings suggest that TRH binding induces a separation of the cytoplasmic ends of TMH5 and TMH6 and a rotation of TMH6. These changes likely increase the surface accessible area at the juxtamembrane region of intracellular loop 3 that could promote interactions between G proteins and key residues within the receptor.