The mouse genome encodes a family of Oas proteins that synthesize 2′-5′A in response to dsRNA. 2′-5′A activates the endonuclease RNase L to cleave single-stranded viral and cellular RNAs. The inactive, full-length Oas1b protein confers flavivirus-specific disease resistance. Although similar numbers of neurons were infected in resistant and susceptible brains after an intracranial virus infection, viral components amplified only in susceptible brains at later times. A line of resistant RNase L −/− mice was used to evaluate the contribution of RNase L to the resistance phenotype in vivo . Activation of RNase L antiviral activity by flavivirus infection was indicated by increased viral RNA levels in the brains of RNase L −/− mice. Oas1a and Oas1b mRNA levels were higher in infected RNase L −/− mice, indicating that activated RNase L also have a proflaviviral affect. However, the resistance phenotype was equally robust in RNase L −/− and RNase L +/+ mice.
Abstract The SARS-CoV-2 spike protein is a highly immunogenic and mutable protein that is the target of vaccine prevention and antibody therapeutics. This makes the encoding S-gene an important sequencing target. The SARS-CoV-2 sequencing community overwhelmingly adopted tiling amplicon-based strategies for sequencing the entire genome. As the virus evolved, primer mismatches inevitably led to amplicon drop-out. Given the exposure of the spike protein to host antibodies, mutation occurred here most rapidly, leading to amplicon failure over the most insightful region of the genome. To mitigate this, we developed SpikeSeq, a targeted method to amplify and sequence the S-gene. We evaluated 20 distinct primer designs through iterative in silico and in vitro testing to select the optimal primer pairs and run conditions. Once selected, periodic in silico analysis monitor primer conservation as SARS-CoV-2 evolves. Despite being designed during the Beta wave, the selected primers remain > 99% conserved through Omicron as of 2023-04-14. To validate the final design, we compared SpikeSeq data and National SARS-CoV-2 Strain Surveillance whole-genome data for 321 matching samples. Consensus sequences for the two methods were highly identical (99.998%) across the S-gene. SpikeSeq can serve as a complement to whole-genome surveillance or be leveraged where only S-gene sequencing is of interest. While SpikeSeq is adaptable to other sequencing platforms, the Nanopore platform validated here is compatible with low to moderate throughputs, and its simplicity better enables users to achieve accurate results, even in low resource settings.
Clinically, Zika virus (ZIKV) infection can lead to developmental defects in the cortex of the fetal brain. How ZIKV triggers this event in developing neural cells is not well understood at a molecular level and likely requires many contributing factors. ZIKV efficiently infects human neural progenitor cells (hNPCs) and leads to growth arrest of these cells, which are critical for brain development. Here, we demonstrate that infection with ZIKV, but not dengue virus, disrupts the cell cycle of hNPCs by halting DNA replication during S phase and inducing DNA damage. We further show that ZIKV infection activates the ATM/Chk2 checkpoint but prevents the activation of another checkpoint, the ATR/Chk1 pathway. These results unravel an intriguing mechanism by which an RNA virus interrupts host DNA replication. Finally, by mimicking virus-induced S-phase arrest, we show that ZIKV manipulates the cell cycle to benefit viral replication.
The COVID-19 pandemic was accompanied by an unprecedented surveillance effort. The resulting data were and will continue to be critical for surveillance and control of SARS-CoV-2. However, some genomic surveillance methods experienced challenges as the virus evolved, resulting in incomplete and poor quality data. Complete and quality coverage, especially of the S-gene, is important for supporting the selection of vaccine candidates. As such, we developed a robust method to target the S-gene for amplification and sequencing. By focusing on the S-gene and imposing strict coverage and quality metrics, we hope to increase the quality of surveillance data for this continually evolving gene. Our technique is currently being deployed globally to partner laboratories, and public health representatives from 79 countries have received hands-on training and support. Expanding access to quality surveillance methods will undoubtedly lead to earlier detection of novel variants and better inform vaccine strain selection.
Few studies have prospectively assessed SARS-CoV-2 community infection in children aged 0 to 4 years. Information about SARS-CoV-2 incidence and clinical and virological features in young children could help guide prevention and mitigation strategies.To assess SARS-CoV-2 incidence, clinical and virological features, and symptoms in a prospective household cohort and to compare viral load by age group, symptoms, and SARS-CoV-2 lineage in young children, older children, and adults.This prospective cohort study enrolled 690 participants from 175 Maryland households with 1 or more children aged 0 to 4 years between November 24, 2020, and October 15, 2021. For 8 months after enrollment, participants completed weekly symptom questionnaires and submitted self-collected nasal swabs for SARS-CoV-2 qualitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) testing, quantitative RT-PCR testing, and viral lineage determination. For the analyses, SARS-CoV-2 Alpha and Delta lineages were considered variants of interest or concern. Sera collected at enrollment and at approximately 4 months and 8 months after enrollment were assayed for SARS-CoV-2 spike and nucleocapsid protein antibodies.Incidence, clinical and virological characteristics, and symptoms of SARS-CoV-2 infection by age group and correlations between (1) highest detected viral load and symptom frequency and (2) highest detected viral load and SARS-CoV-2 lineage.Among 690 participants (355 [51.4%] female and 335 [48.6%] male), 256 individuals (37.1%) were children aged 0 to 4 years, 100 (14.5%) were children aged 5 to 17 years, and 334 (48.4%) were adults aged 18 to 74 years. A total of 15 participants (2.2%) were Asian, 24 (3.5%) were Black, 603 (87.4%) were White, 43 (6.2%) were multiracial, and 5 (0.7%) were of other races; 33 participants (4.8%) were Hispanic, and 657 (95.2%) were non-Hispanic. Overall, 54 participants (7.8%) had SARS-CoV-2 infection during the surveillance period, including 22 of 256 children (8.6%) aged 0 to 4 years, 11 of 100 children (11.0%) aged 5 to 17 years, and 21 of 334 adults (6.3%). Incidence rates per 1000 person-weeks were 2.25 (95% CI, 1.28-3.65) infections among children aged 0 to 4 years, 3.48 (95% CI, 1.59-6.61) infections among children aged 5 to 17 years, and 1.08 (95% CI, 0.52-1.98) infections among adults. Children aged 0 to 17 years with SARS-CoV-2 infection were more frequently asymptomatic (11 of 30 individuals [36.7%]) compared with adults (3 of 21 individuals [14.3%]), with children aged 0 to 4 years most frequently asymptomatic (7 of 19 individuals [36.8%]). The highest detected viral load did not differ between asymptomatic vs symptomatic individuals overall (median [IQR], 2.8 [1.5-3.3] log10 copies/mL vs 2.8 [1.8-4.4] log10 copies/mL) or by age group (median [IQR] for ages 0-4 years, 2.7 [2.4-4.4] log10 copies/mL; ages 5-17 years: 2.4 [1.1-4.0] log10 copies/mL; ages 18-74 years: 2.9 [1.9-4.6] log10 copies/mL). The number of symptoms was significantly correlated with viral load among adults (R = 0.69; P < .001) but not children (ages 0-4 years: R = 0.02; P = .91; ages 5-17 years: R = 0.18; P = .58). The highest detected viral load was greater among those with Delta variant infections (median [IQR], 4.4 [3.9-5.1] log10 copies/mL) than those with infections from variants not of interest or concern (median [IQR], 1.9 [1.1-3.6] log10 copies/mL; P = .009) or those with Alpha variant infections (median [IQR], 2.6 [2.3-3.4] log10 copies/mL; P = .006).In this study, SARS-CoV-2 infections were frequently asymptomatic among children aged 0 to 4 years; the presence and number of symptoms did not correlate with viral load. These findings suggest that symptom screening may be insufficient to prevent outbreaks involving young children.
Significance All members of the order Nidovirales, including Simian hemorrhagic fever virus (SHFV), produce subgenomic mRNAs (sg mRNAs) for their 3′ genes regulated by genomic transcription regulatory sequences (TRSs). We used a next-generation sequencing–facilitated approach to comprehensively analyze a nidovirus sg mRNA transcriptome. The discovery of high sg mRNA redundancy for individual genes and multiple previously unreported sg mRNAs encoding nonstructural proteins, alternative reading frame proteins, or C-terminal peptides of known proteins represents a paradigm shift in our understanding of SHFV genome-coding capacity and the complexity of transcription regulation that is expected to also be characteristic of other nidoviruses. High sg mRNA redundancy would ensure continued protein synthesis if a TRS is inactivated by random mutation.