Abstract. Antarctica and Greenland hold enough ice to raise sea level by more than 65 m if they were to melt completely. Predicting future ice sheet mass balance depends on our ability to model these ice sheets, which is limited by our current understanding of several key physical processes, such as iceberg calving. Large-scale ice flow models either ignore this process or represent it crudely. To model fracture formation, which is an important component of many calving models, Continuum Damage Mechanics as well as Linear Fracture Mechanics are commonly used. However, these methods applied across the Antarctic continent have a large number of uncertainties. Here we present an alternative, statistics-based method to model the most probable zones of nucleation of fractures. We test this approach on all main ice shelf regions in Antarctica, including the Antarctic Peninsula. We can model up to 99 % of observed fractures, with an average rate of 84 % for grounded ice and 61 % for floating ice and mean overestimation error of 26 % and 20 %, respectively, thus providing the basis for modelling calving of ice shelves. We find that Antarctic ice shelves can be classified into groups based on the factors that control fracture location. The factors that trigger fracturing as well as sustain existing fractures advected from upstream vary from one ice shelf to another.
Abstract The recent release of the next‐generation global ice history model, ICE6G_C(VM5a) , is likely to be of interest to a wide range of disciplines including oceanography (sea level studies), space gravity (mass balance studies), glaciology, and, of course, geodynamics (Earth rheology studies). In this paper we make an assessment of some aspects of the ICE6G_C(VM5a) model and show that the published present‐day radial uplift rates are too high along the eastern side of the Antarctic Peninsula (by ∼8.6 mm/yr) and beneath the Ross Ice Shelf (by ∼5 mm/yr). Furthermore, the published spherical harmonic coefficients—which are meant to represent the dimensionless present‐day changes due to glacial isostatic adjustment (GIA)—contain excessive power for degree ≥90, do not agree with physical expectations and do not represent accurately the ICE6G_C(VM5a) model. We show that the excessive power in the high‐degree terms produces erroneous uplift rates when the empirical relationship of Purcell et al. (2011) is applied, but when correct Stokes coefficients are used, the empirical relationship produces excellent agreement with the fully rigorous computation of the radial velocity field, subject to the caveats first noted by Purcell et al. (2011). Using the Australian National University (ANU) groups CALSEA software package, we recompute the present‐day GIA signal for the ice thickness history and Earth rheology used by Peltier et al. (2015) and provide dimensionless Stokes coefficients that can be used to correct satellite altimetry observations for GIA over oceans and by the space gravity community to separate GIA and present‐day mass balance change signals. We denote the new data sets as ICE6G_ANU .
The Australian Research Council recently awarded a grant to a consortium of five Australian universities to purchase ten geodetic-quality GPS receivers and peripherals. This cooperative approach will enhance new and existing GPS-geodetic research opportunities for Australian academic geodesists. These research projects include the monitoring of deformation of man-made structures and natural features, global and regional plate tectonics, measurement of sea-level change, mapping of Antarctic ice sheets and their flow, sounding of the Earth's atmosphere, and experiments in kinematic and rapid-static GPS-geodesy.
New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993–2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr−1, indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ∼12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4–5 mm yr−1 of left-lateral and 2–3 mm yr−1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may indicate a temporary shift of activity onto out of sequence thrusts like the Gain Thrust as opposed to the main frontal thrust (the Ramu-Markham fault). In addition, we show that the southern Highlands Fold-and-Thrust Belt is the major boundary between the rigid Australian Plate and the New Guinea Highlands Block, with convergence occurring at rates between ∼6 and 13 mm yr−1.
Using up to 11 years of data from a global network of Global Positioning System (GPS) stations, including 12 stations well distributed across the Pacific Plate, we derive present‐day Euler vectors for the Pacific Plate more precisely than has previously been possible from space geodetic data. After rejecting on statistical grounds the velocity of one station on each of the Pacific and North American plates, we find that the quality of fit of the horizontal velocities of 11 Pacific Plate (PA) stations to the best fitting PA Euler vector is similar to the fit of 11 Australian Plate (AU) velocities to the AU Euler vector and ∼20% better than the fit of nine North American Plate (NA) velocities to the NA Euler vector. The velocities of stations on the Pacific and Australian Plates each fit a rigid plate model with an RMS residual of 0.4 mm/yr, while the North American velocities fit a rigid plate model with an RMS velocity of 0.6 mm/yr. Our best fitting PA/AU relative Euler vector is located ∼170 km southeast of the NUVEL‐1A pole but is not significantly different at the 95% confidence level. It is also close (<70 km in position and <3% in rate) to a pole derived from transform faults identified from satellite altimetry, suggesting that the vector has not changed significantly over the past 3 Myr. Our relative Euler vector is also consistent with all known geological and geodetic evidence concerning the AU/PA plate boundary through New Zealand. The GPS sites offshore of southern California are presently moving 4–5 ± 1 mm/yr relative to predicted Pacific velocity, with their residual velocities in approximately the opposite direction to PA/NA relative motion. Likewise, the easternmost sites in South Island, New Zealand, are moving ∼3 ± 1 mm/yr relative to predicted Pacific velocity, with the residuals in approximately the opposite direction to PA/AU relative motion. These velocity residuals are in the same sense as predicted by elastic strain accumulation on known plate boundary faults but are of a significantly higher magnitude in both southern California and New Zealand, implying that the plate boundary zones in both regions are wider than previously believed.
Key Points A series of triaxial compression tests were performed on methane hydrate-bearing sediments and hydrate-free sediments with different amounts of fines content and at three levels of density The rise in fines content and decrease in void ratio enhanced the peak shear strength and promoted dilation behavior of methane hydrate-bearing sediments The presence of methane hydrate increased the stress ratios at the critical state of methane hydrate-bearing sediments with various amounts of fines content