Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis.
Summary Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLC. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development. Highlights An mRNA transfection-based PGCLC induction method is developed Marmoset PGCLCs are efficiently induced from iPSCs Marmoset PGCLCs differentiate into gonocyte-like cells in mouse kidneys Developmentally regulated expression and demethylation are recapitulated eTOC blurb Watanabe et al. efficiently induced marmoset primordial germ cell-like cells (PGCLCs) using an mRNA transfection-based approach. PGCLCs further develop into gonocyte-like cells in the xenoreconstituted testes constructed under mouse kidney capsules. This system faithfully reproduced in vivo developmental processes (e.g., stage-specific expression of developmentally regulated genes and DNA demethylation).
Abstract We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here we explore requirement for the downstream signalling transducer and activator of transcription, STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our novel image analysis tool, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1, underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, implicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo . By blocking MEK/ERK signalling from the morula stage we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro . Summary Statement Inducing diapause in mouse embryos demonstrates that STAT3 and TFCP2L1 are essential for self-renewal of the epiblast, but only TFCP2L1 is required for derivation of embryonic stem cells.
Abstract The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.
Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLCs. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development.
Abstract OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro . To determine how OCT4 protects the pluripotent lineage from differentiation into trophoblast, we used single cell transcriptomics and quantitative immunofluorescence on blastocysts and established differentially expressed genes and pathways between control and OCT4 null cells. Activation of most pluripotency-associated transcription factors in the early mouse inner cell mass appears independent of OCT4, whereas JAK/STAT signalling requires OCT4, via activation of IL6ST. Single cell deconvolution, diffusion component and trajectory inference dissected the process of differentiation of OCT4 null cells by activating specific gene-network and transcription factors. Downregulation of glycolytic and oxidative metabolism was observed. CHIPseq analysis suggests OCT4 directly targets rate-limiting glycolytic enzymes. Concomitant with significant disruption of the STAT3 pathway, oxidative respiration is significantly diminished in OCT4 null cells. Upregulation of the lysosomal pathway detected in OCT4 null embryos is likely attributable to aberrant metabolism. Highlights and novelty Major pluripotency-associated transcription factors are activated in OCT4-deficient early mouse ICM cells, coincident with ectopic expression of trophectoderm markers JAK/STAT signalling is defective in OCT4 null embryos OCT4 promotes expression of KATS enzymes by means of glycolytic production of Acetyl CoA to secure chromatin accessibility for acquisition of epiblast identity OCT4 regulates the metabolic and biophysical processes required for establishment of embryonic pluripotency