Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.
Abstract Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. Key points • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.
Abstract Plants, including cocoa bean, are the main source of metabolites with multiple biological functions. Polyphenol extracts are widely used as a nutraceutical supplement for their well‐known health‐promoting role. In this paper, a preliminary untargeted metabolic screening was carried out by matrix‐assisted laser desorption/ionization (MALDI)‐time of flight (TOF)/TOF on a pool of chocolate samples made by cocoa beans of different geographical areas. Then, a targeted approach was developed for polyphenol quantification by an optimized Liquid chromatography (LC)–tandem mass spectrometry (MS/MS) method multiple reaction monitoring (MRM) ion mode. Detection limit of polyphenol standard ranged between 1 and 25 pg/μl with variation coefficient lower than 15%. External calibration curves were used for quantification of polyphenols in 18 samples. Fifty polyphenols were detected in a single LC–MRM/MS run and quantified by monitoring almost 90 transitions in a 5‐minute run. The polyphenols content of different cocoa beans from several countries was finally compared by principal component analysis (PCA) statistical analysis suggesting that the chocolate made by Ecuador cocoa beans showed the highest level of polyphenols.
Abstract Prostaglandins (PGs) are hormone-like mediators in many physiological and pathological processes that are present in all vertebrates, in some terrestrial and aquatic invertebrates, and have also been identified in some macroalgae. They have recently been reported also in marine microalgae but their role as chemical mediators is largely unknown. Here we studied the expression pattern of the PG biosynthetic pathway during different growth phases of the centric diatom Thalassiosira rotula and assessed the release of PGs in the surrounding environment for the first time. We show that enzymes responsible for PGs formation such as cyclooxygenase, prostaglandin E synthase 2-like and prostaglandin F synthase are mainly expressed at the end of the exponential phase and that PGs are released especially during the stationary and senescent phases, suggesting a possible signaling function for these compounds. Phylogenetic analysis of the limiting enzyme, COX, indicate the presence in diatoms of more than one enzyme related to the oxidative metabolism of fatty acids belonging to the peroxidase-cyclooxygenase superfamily. These findings suggest a more complex evolution and diversity of metabolic pathways leading to the synthesis of lipid mediators in diatoms.
Limited or absent activity of the enzyme α-galactosidase A (α-Gal A), due to mutation in the related gene on the X chromosome, leads to the development of a rare hereditary and genetic disease known as Fabry disease (FD). This pathology involves a progressive accumulation in various organs of the substrates of the enzyme e.g., globotriaosylceramide (Gb3) and its deacylated form, globotriaosylsphingosine (Lyso-Gb3), suggesting these molecules as biomarkers of Fabry disease. The present paper describes the development of an analytical strategy for the identification and quantification of Gb3 and Lyso-Gb3, in serum and blood samples by using liquid chromatography (LC) coupled to mass spectrometry in multiple reaction monitoring (MRM/MS) ion mode. The best experimental conditions were obtained by extracting the glycolipids with chloroform/methanol/H2O (2/1/0.3) and by separating them on a C4 column with a linear gradient (A: H2O with 2 mM ammonium formate. B: methanol with 1 mM ammonium formate, both acidified with 0.2% formic acid). The best transitions (a combination of precursor and fragment ions—m/z) were 786.8 m/z > 268.3 m/z for Lyso-GB3, 1137.3 m/z > 264.3 m/z for Gb3, 1039.3 m/z > 264.4 m/z for N-heptadecanoyl-ceramide trihexoside, and 843.5 m/z > 264.3 m/z for N-glycinated lyso-ceramide trihexoside, the latter being used as an internal standard. The developed method provided a reliable, fast, and effective procedure for direct measurements of GB3 and Lyso-GB3 in serum and blood for diagnosis of Fabry disease, suggesting this method as a complementary assay to the current enzymatic test. Therefore, this approach could open new insights into the clinical diagnostics of lysosomal storage disorders.
Background Recently, environmental pollution has become a significant concern for human, animal, and environmental health, fitting within the “One Health” framework. Among the various environmental contaminants, per- and polyfluoroalkyl substances (PFASs) have gathered substantial attention due to their persistence, bioaccumulation, and adverse health effects. This study aimed to compare the levels of 12 PFASs in the fur, liver, and muscle of wild roe deer to evaluate the feasibility of using fur as a non-invasive biomonitoring matrix. Methods A total of 20 male and 20 female roe deer aged between 12 and 24 months were randomly sampled from a hunting area in Northern Italy. Samples of fur, muscle, and liver were collected post-mortem, and PFAS concentrations were measured using a validated UHPLC-HRMS method. Results and discussion The results indicated significant differences in PFAS concentrations among the three matrices. Fur, although easier to sample and store, showed highly variable PFAS levels, with different detection frequencies compared to the muscle and liver. PFASs such as PFHxA were more frequently detected in fur than in the liver and muscle, while compounds such as PFBA, PFPeA, PFHpA, PFDA, PFHxS, 6-2 FTS, and 8-2 FTS were less frequently detected in fur. In conclusion, while fur presents many practical advantages for biomonitoring, such as non-invasive sampling and stability, its use is complicated by varying detection frequencies and concentration levels. These aspects, together with the use of a single sampling technique, can be considered a limitation of the study. Notably, compounds such as PFOA, PFNA, and PFOS showed partially similar detection frequencies across the matrices, suggesting potential interest for further research. This study offers new perspectives on the use of fur for environmental monitoring, highlighting the need for more extensive research to understand the relationship between PFAS concentrations in fur and other biological matrices. Future studies should focus on methodological improvements in extraction and quantification techniques for PFASs in fur to enhance their reliability as a biomonitoring tool.
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with fused aromatic rings, primarily derived from combustion processes and environmental pollutants. This narrative review discusses the most relevant studies on PAHs, focusing on their sources, environmental and occupational exposure, and effects on human health, emphasizing their roles as carcinogenic, mutagenic, and teratogenic agents. The primary pathways for human exposure to PAHs are through the ingestion of contaminated food (mainly due to some food processing methods, such as smoking and high-temperature cooking techniques), the inhalation of ambient air, and the smoking of cigarettes. Coke oven workers are recognized as a high-risk occupational group for PAH exposure, highlighting the need for appropriate strategies to mitigate these risks and safeguard worker health. PAHs are metabolized into reactive intermediates in the body, which can lead to DNA damage and promote the development of various health conditions, particularly in environments with high exposure levels. Chronic PAH exposure has been linked to respiratory diseases, as well as cardiovascular problems and immune system suppression. Furthermore, this review underscores the significant impact of PAHs on reproductive health. The results of the reported studies suggest that both male and female fertility can be compromised due to oxidative stress, DNA damage, and endocrine disruption caused by PAH exposure. In males, PAHs impair sperm quality, while, in females, they disrupt ovarian function, potentially leading to infertility, miscarriage, and birth defects. Fetal exposure to PAHs is also associated with neurodevelopmental disorders. Given the extensive and detrimental health risks posed by PAHs, this review stresses the importance of stringent environmental regulations, occupational safety measures, and public health initiatives to mitigate exposure and safeguard reproductive and overall health.
In this work, we assess the potential of waste products of Phlegrean mandarin (Citrus reticulata Blanco), namely seeds and peel, to be reutilized as a source of bioactive compounds beneficial for the human diet. Starting from the evidence that the by-products of this specific cultivar are the most powerful sources of antioxidants compared to pulp, we have investigated if and how the bioactive compounds in peel and seeds may be affected by fruit ripening. Three stages of fruit ripening have been considered in our study: unripe fruits = UF, semi-ripe fruits = SRF, ripe fruits = RF. The overall results indicated that RF showed the highest concentration of antioxidants. Among fruit components, peel was the richest in total antioxidant capacity, total polyphenol content, total flavonoids, total chlorophylls and carotenoids, while seeds exhibited the highest concentration of total condensed tannins and ascorbic acid. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay indicates the occurrence, in peel extracts, of 28 phenolic compounds, mainly flavonoids (FLs); in seeds, 34 derivatives were present in the first stage (UF), which diminish to 24 during the ripening process. Our data indicated that the content of phytochemicals in citrus strongly varies among the fruit components and depends on the ripening stage. The higher antioxidant activity of peel and seeds, especially in RF, encourage a potential use of by-products of this specific citrus cultivar for industrial or pharmacological applications. However, to maximize the occurrence of desired bioactive compounds, it is important also to consider the ripening stage at which fruits must be collected.