In recent years, several types of platelet concentrates have been investigated and applied in many fields, particularly in the musculoskeletal system. Platelet-rich fibrin (PRF) is an autologous biomaterial, a second-generation platelet concentrate containing platelets and growth factors in the form of fibrin membranes prepared from the blood of patients without additives. During tissue regeneration, platelet concentrates contain a higher percentage of leukocytes and a flexible fibrin net as a scaffold to improve cell migration in angiogenic, osteogenic, and antibacterial capacities during tissue regeneration. PRF enables the release of molecules over a longer period, which promotes tissue healing and regeneration. The potential of PRF to simulate the physiology and immunology of wound healing is also due to the high concentrations of released growth factors and anti-inflammatory cytokines that stimulate vessel formation, cell proliferation, and differentiation. These products have been used safely in clinical applications because of their autologous origin and minimally invasive nature. We focused on a narrative review of PRF therapy and its effects on musculoskeletal, oral, and maxillofacial surgeries and dermatology. We explored the components leading to the biological activity and the published preclinical and clinical research that supports its application in musculoskeletal therapy. The research generally supports the use of PRF as an adjuvant for various chronic muscle, cartilage, and tendon injuries. Further clinical trials are needed to prove the benefits of utilizing the potential of PRF.
We assessed the efficacy of a novel platelet-rich fibrin (PRF)-augmented repair strategy for promoting biological healing of an anterior cruciate ligament (ACL) midsubstance tear in a rabbit model. The biological gap-bridging effect of a PRF scaffold alone or in combination with rabbit ligamentocytes on primary ACL healing was evaluated both in vitro and in vivo.A PRF matrix can be implanted as a provisional fibrin-platelet bridging scaffold at an ACL defect to facilitate functional healing.Controlled laboratory study.The biological effects of PRF on primary rabbit ligamentocyte proliferation, tenogenic differentiation, migration, and tendon-specific matrix production were investigated for treatment of cells with PRF-conditioned medium (PRFM). Three-dimensional (3D) lyophilized PRF (LPRF)-cell composite was fabricated by culturing ligamentocytes on an LPRF patch for 14 days. Cell-scaffold interactions were investigated under a scanning electron microscope and through histological analysis. An ACL midsubstance tear model was established in 3 rabbit groups: a ruptured ACL was treated with isolated suture repair in group A, whereas the primary repair was augmented with LPRF and LPRF-cell composite to bridge the gap between ruptured ends of ligaments in groups B and C, respectively. Outcomes-gross appearance, magnetic resonance imaging, and histological analysis-were evaluated in postoperative weeks 8 and 12.PRFM promoted cultured ligamentocyte proliferation, migration, and expression of tenogenic genes (type I and III collagen and tenascin). PRF was noted to upregulate cell tenogenic differentiation in terms of matrix production. In the 3D culture, viable cells formed layers at high density on the LPRF scaffold surface, with notable cell ingrowth and abundant collagenous matrix depositions. Moreover, ACL repair tissue and less articular cartilage damage were observed in knee joints in groups B and C, implying the existence of a chondroprotective phenomenon associated with PRF-augmented treatment.Our PRF-augmented strategy can facilitate the formation of stable repair tissue and thus provide gap-bridging in ACL repair.From the translational viewpoint, effective primary repair of the ACL may enable considerable advancement in therapeutic strategy for ACL injuries, particularly allowing for proprioception retention and thus improved physiological joint kinematics.
Single-row (SR) and double-row repair techniques have been described to treat rotator cuff tears. We present a novel surgical strategy of arthroscopic-assisted mini-open repair in which a locking-loop suture bridge (LLSB) is used.To compare the functional outcomes and repair integrity of LLSB technique to the SR technique for arthroscopic-assisted mini-open repair of small to medium rotator cuff tears.Cohort study; Level of evidence, 3.Included were 39 patients who underwent LLSB repair (LLSB group) and 44 patients who underwent SR suture anchor repair (SR group) from 2015 to 2018. We evaluated all patients preoperatively and at 3, 6, 12, and 24 months postoperatively using the visual analog scale (VAS) for pain, Oxford Shoulder Score (OSS), and American Shoulder and Elbow Surgeons (ASES) score. Also, shoulder sonography was performed at 12 months postoperatively to evaluate repair integrity using the Sugaya classification system. The independent-sample t test was used to analyze functional outcomes (VAS, OSS, and ASES scores), and the Fisher exact test was used to analyze postoperative sonography results.Patients in both the LLSB and SR groups saw a significant improvement on all 3 outcome measures from preoperatively to 24 months postoperatively (P < .001 for all). However, when comparing scores between groups, only the scores at 3 months postoperatively differed significantly (VAS: P = .002; OSS: P < .001; ASES: P = .005). Shoulder sonography at 12 months postoperatively revealed no significant difference in repair integrity between the LLSB and SR groups (retear rate: 10.26% and 6.82%, respectively; P = .892).Better outcome scores were seen at 3-month follow-up in the LLSB group, with no difference in retear rates compared with the SR group at 12 months postoperatively. The LLSB technique was found to be a reliable technique for rotator cuff repair of small- to medium-sized tears.
Mesenchymal stem cells exhibit therapeutic efficacy for brain injury. This study examined the effect of mesenchymal stem cells derived from human exfoliated deciduous teeth (SHED) on alleviating symptoms of Parkinson's disease (PD).
The main aim of this study is to develop a one-stage method to combine platelet-rich fibrin (PRF) and autologous cartilage autografts for porcine articular cartilage repair. The porcine chondrocytes were treated with different concentrations of PRF-conditioned media and were evaluated for their cell viability and extracellular glycosaminoglycan (GAG) synthesis during six day cultivation. The chemotactic effects of PRF on chondrocytes on undigested cartilage autografts were revealed in explant cultures. For the in vivo part, porcine chondral defects were created at the medial femoral condyles of which were (1) left untreated, (2) implanted with PRF combined with hand-diced cartilage grafts, or (3) implanted with PRF combined with device-diced cartilage grafts. After six months, gross grades, histological, and immunohistochemical analyses were compared. The results showed that PRF promotes the viability and GAG expression of the cultured chondrocytes. Additionally, the PRF-conditioned media induce significant cellular migration and outgrowth of chondrocytes from undigested cartilage grafts. In the in vivo study, gross grading and histological scores showed significantly better outcomes in the treatment groups as compared with controls. Moreover, both treatment groups showed significantly more type II collagen staining and minimal type I collagen staining as compared with controls, indicating more hyaline-like cartilage and less fibrous tissue. In conclusion, PRF enhances the viability, differentiation, and migration of chondrocytes, thus, showing an appealing capacity for cartilage repair. The data altogether provide evidences to confirm the feasibility of a one-stage, culture-free method of combining PRF and cartilage autografts for repairing articular cartilage defects. From translational standpoints, these advantages benefit clinical applications by simplifying and potentiating the efficacy of cartilage autograft transplants.
Previous studies have compared different kinds of fixations for anterior cruciate ligament reconstruction. Nevertheless, there is no optimal method to date. To the best of authors' knowledge, there is no article discussing the combination of adjustable suspensory device and interference screw for hybrid tibial fixation.In total, 66 patients (n = 34, adjustable suspensory device and interference screw; n = 32, cortical screw and interference screw) were analyzed. Their International Knee Documentation Committee score and Tegner activity level scale were evaluated before and after a 2-year follow-up. The Single Assessment Numeric Evaluation score was evaluated after a 2-year follow-up. Physical exams such as range of motion, anterior knee pain (VAS > = 3) and Lachman test were assessed before and at least 12 months after surgery. To evaluate tunnel widening, anteroposterior and lateral view radiography was conducted 1 day and at least 12 months after surgery. A more than 10% change was considered tibial tunnel widening. Mann-Whitney U test, independent t test, paired t test, Fisher's exact test and chi-squared test were used to compare the variables. Linear and logistic regression models were applied to adjust for potential confounders.No variable except gender (P = 0.006) showed significant difference with regard to demographic data. After adjustment, there was no statistically significant difference between the groups regarding post-operative physical exams. Patients who used adjustable suspensory device and interference screw had lower post-operative Single Assessment Numeric Evaluation score (adjusted β - 8.194; P = 0.017), Tegner activity level scale (adjusted β - 1.295; P = 0.001) and pre-operative degrees of knee flexion (adjusted β - 2.825; P = 0.026). Less percentage of tunnel widening in the lateral view of radiographs was seen in patients in group of adjustable suspensory device and interference screw (adjusted β - 1.733; P = 0.038). No significant difference was observed in the anteroposterior view of radiographs (adjusted β - 0.667; P = 0.26).In these 66 patients, we observed less tibial tunnel widening and lower post-operative functional scores in the group of adjustable suspensory device and interference screw. Both groups displayed similar outcomes of physical exams as well as improvement after operation. The proposed method may become an alternative option. Nonetheless, the quality of our study is still limited, and thus further studies are warranted to determine the efficacy and further application.Joint Institutional Review Board of Taipei Medical University, Taipei, Taiwan (No: N201805094 ).Prospective comparative cohort study; Level of evidence, II.
Abstract Background: Previous studies have compared different kinds of fixations for anterior cruciate ligament reconstruction. Nevertheless, there is no optimal method to date. Furthermore, to the best of authors’ knowledge, there is no article discussing the combination of suspensory device and interference screw for hybrid tibial fixation. Methods: In total, 66 patients (34, modified group; 32, traditional group) were enrolled. Their International Knee Documentation Committee score, Tegner score, and Single Assessment Numeric Evaluation score were evaluated after a 2-year follow-up. The range of motion, anterior knee irritation and Lachman test were assessed at least 12 months after surgery. To evaluate tunnel widening, anteroposterior and lateral view radiography was conducted 1 day after surgery and at least 12 months later. A more than 10% change in the tunnel was considered as tibial tunnel widening. Mann–Whitney U test, independent t test, and chi-squared test were used to compare the variables between the groups. Results: No variable except gender ( P = 0.006) showed any significant difference with regard to demographic data. Functional scores and physical examinations also showed no statistically significant difference between the groups. Patients who underwent traditional hybrid fixation were more prone to anterior knee irritation ( P = 0.028). Further, more patients who underwent traditional hybrid fixation showed greater percentage of tunnel widening in the lateral view of radiographs ( P = 0.033). No significant difference was observed in the anteroposterior view of radiographs between the groups ( P = constant). Conclusion: Patients who underwent modified hybrid tibial fixation had similar clinical outcomes at 2-year follow-up, but less tibial tunnel widening in lateral view radiographs and less anterior knee irritation at 1-year follow-up compared with patients who underwent traditional hybrid tibial fixation. Trial Registration: Joint Institutional Review Board of Taipei Medical University, Taipei, Taiwan (No: N201805094). Study Design: Prospective comparative cohort study; Level of evidence, II.