Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.
The development of more effective light sources for Photodynamic Therapy (PDT) of brain tumors would be of benefit for both research and clinical application. In this study, the use of light‐emitting diode arrays for PDT of brain tumors with Photofrin® porfimer sodium was investigated. An inflatable balloon device with an LED tip was constructed. These light‐emitting diodes (LED’s) are based on the new semiconductor Aluminum Gallium Arsenide (AlGaAs). They can emit broad spectrum red light at high power levels with a peak wavelength of 677 nm and a bandwidth of 25 nm. The balloon was inflated with 0.1% intralipid which served as a light scattering medium. Measurements of light flux at several points showed a high degree of light dispersion. The spectral emission of this probe was then compared to the absorption spectrum of Photofrin®. This analysis showed that of 27.5% of the LED light emission is absorbed by Photofrin® as compared to a 630 nm monochromatic laser light source. Thus, in order to achieve an energy light dose equivalent to a laser light source, the LED light output has to be increased by a factor of 3.63. This need for additional energy is the difference between a 630 nm and 677 nm absorption of Photofrin®. Using the LED probe and the Laser balloon adapter, a comparison of brainstem toxicity in canines was conducted. LED and laser light showed the same signs of toxicity at equivalent light energy and Photofrin® doses. The Maximal Tolerated Dose (MTD) was 1.6 mg/kg and 100 J/cm2 of light energy (laser or LED). In addition, LED light was able to decrease glioma cell growth in vitro by 50%. This study concludes that LED’s are a suitable light source for PDT of brain tumors with Photofrin®.
Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.
Photodynamic therapy was studied in dogs with and without posterior fossa glioblastomas. This mode of therapy consisted of intravenous administration of Photofrin-II at doses ranging from 0.75 to 4 mg/kg 24 hours prior to laser light irradiation in the posterior fossa. Tissue levels of Photofrin-II were four times greater in the tumor than in the surrounding normal brain. Irradiation was performed using 1 hour of 500 mW laser light at a wavelength of 630 nm delivered through a fiberoptic catheter directly into the tumor bed via a burr hole. All animals receiving a high dose (4 or 2 mg/kg) of Photofrin-II developed serious brain-stem neurotoxicity resulting in death or significant residual neurological deficits. A lower dose (0.75 mg/kg) of Photofrin-II produced tumor kill without significant permanent brain-stem toxicity in either the control animals or the animals with cerebellar brain tumors receiving photodynamic therapy.
<i>Objective:</i> The aim of this study was to investigate the second-generation photosensitizer benzoporphyrin derivative (BPD) and a novel light source applicator based on light-emitting diode (LED) technology for photodynamic therapy (PDT) of brain tumors. <i>Methods:</i> We used a canine model to investigate normal brain stem toxicity. Twenty-one canines underwent posterior fossa craniectomies followed by PDT with BPD. These animals were compared to light only and BPD control. In addition, we investigated the ability of BPD and LED to cause inhibition of cell growth in canine glioma and human glioma cell lines, in vitro. The biodistribution of BPD labeled with <sup>111</sup>In-BPD in mice with subcutaneous and intracerebral gliomas and canines with brain tumors was studied. <i>Results:</i> The in vivo canine study resulted in a maximal tolerated dose of 0.75 mg/kg of BPD and 100 J/cm<sup>2</sup> of LED light for normal brain tissue. The in vitro study demonstrated 50% growth inhibition for canine and human glioma cell lines of 10 and 4 ng/ml, respectively. The mucine study using <sup>111</sup>In-BPD showed a tumor to normal tissue ratio of 12:1 for intracerebral tumors and 3.3:1 for subcutaneous tumors. Nuclear scans of canines with brain tumors showed uptake into tumors to be maximal from 3 to 5 h. <i>Conclusion:</i> Our study supports that BPD and LED light sources when used at appropriate drug and light doses limit normal brain tissue toxicity at doses that can cause significant glioma cell toxicity in vitro. In addition, there is higher BPD uptake in brain tumors as compared to normal brain in a mouse glioma model. These findings make BPD a potential new-generation photosensitizer for the treatment of childhood posterior fossa tumors as well as other malignant cerebral pathology.
Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin®. Photofrin® is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin® is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin® has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin®. First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was measured in these cell lines by tumor DNA synthesis reduction. The effectiveness of BPD against tumor cells in vitro thus established, we have taken the first step toward determining its effectiveness in vivo. The second part of this project consisted of experiments performed to determine the maximum tolerated dose (MTD) of both BPD and LED light. At a light dose of 100 J/cm2, skin damage and neurotoxicity were seen at a BPD dose of 1.0 mg/kg, but not at a dose of 0.75 mg/kg. When BPD remained constant at 0.75 mg/kg, skin damage was seen at light dosages of 125 J/cm2, 150 J/cm2 and 175 J/cm2. One dog also died at a light dose of 175 J/cm2. Further studies will be needed to determine the effectiveness of BPD against tumor cells in vivo.
THE DEVELOPMENT OF more cost-effective light sources for photodynamic therapy of brain tumors would be of benefit for both research and clinical applications. In this study, the use of light-emitting diode arrays for photodynamic therapy of brain tumors with Photofrin porfimer sodium was investigated. An inflatable balloon device with a light-emitting diode (LED) tip was constructed. These LEDs are based on the new semiconductor aluminum gallium arsenide. They can emit broad-spectrum red light at high power levels with a peak wavelength of 677 nm and a bandwidth of 25 nm. The balloon was inflated with 0.1% intralipid, which served as a light-scattering medium. Measurements of light flux at several points showed a high degree of light dispersion. The spectral emission of this probe was then compared with the absorption spectrum of Photofrin. This analysis showed that the light absorbed by Photofrin with the use of the LED source was 27.5% of that absorbed with the use of the monochromatic 630-nm light. Thus, to achieve an energy light dose equivalent to that of a laser light source, the LED light output must be increased by a factor of 3.63. This need for additional energy is the difference between a 630- and 677-nm absorption of Photofrin. Using the LED probe and the laser balloon adapter, a comparison of brain stem toxicity in canines was conducted. LED and laser light showed the same signs of toxicity at equivalent light energy and Photofrin doses. The maximal tolerated dose of Photofrin was 1.6 mg/kg, using 100 J/cm2 of light energy administered by laser or LED. This study concludes that LEDs are a suitable light source for photodynamic therapy of brain tumors with Photofrin. In addition, LEDs have the potential to be highly efficient light sources for second-generation photosensitizers with absorption wavelengths closer to the LED peak emission.