The developed methodology for the selection workshop can be summarized as shown in table 1. The developed methodology ensures that the stakeholder workshop are executed in similar fashion in all 4 study sites, which will make it easier to compare workshop results between study sites. It should be noted that study site partners do need to ensure that the methodology that is followed fits into the local context and circumstances; therefore the developed methodology may be adapted on details to better suit local conditions.
Harvested rainwater is an alternative source of water in arid and semi-arid regions (ASARs) around the world. Many researchers have developed and applied various methodologies and criteria to identify suitable sites and techniques for rainwater harvesting (RWH). Determining the best method or guidelines for site selection, however, is difficult. The main objective of this study was to define a general method for selecting suitable RWH sites in ASARs by assembling an inventory of the main methods and criteria developed during the last three decades. We categorised and compared four main methodologies of site selection from 48 studies published in scientific journals, reports of international organisations, or sources of information obtained from practitioners. We then identified three main sets of criteria for selecting RWH locations and the main characteristics of the most common RWH techniques used in ASARs. The methods were diverse, ranging from those based only on biophysical criteria to more integrated approaches including socio-economic criteria, especially after 2000. The most important criteria for the selection of suitable sites for RWH were slope, land use/cover, soil type, rainfall, distance to settlements/streams, and cost. The success rate of RWH projects tended to increase when these criteria were considered, but an objective evaluation of these selection methods is still lacking. Most studies now select RHW sites using geographic information systems in combination with hydrological models and multi-criteria analysis.
This project deals with the implementation of an innovative water management system in Mediterranean countries (i.e. Tunisia and Egypt), which suffer from chronic water scarcity, together with two European countries (Germany and Italy). The consortium is developing and applying synergic methods and algorithms for investigating the water cycle, using remote sensing techniques.The focus is on the use of satellite data (optical and microwave) for monitoring vegetation cover and water status along with soil moisture temporal evolutions in order to improve the knowledge of the water cycle in arid areas. Both local and regional monitoring are carried out in order to investigate different spatial scales.The scope of the project is to propose practical and costeffective solutions for driving and updating a method for the sustainable use of water in agriculture.First results on soil moisture mapping retrieved in Tunisia using an Artificial Neural Network (ANN) based algorithm is presented in this paper.
Background: Soil salinity poses a significant threat to agricultural lands by adversely affecting soil properties, crop productivity, and, consequently, global food security. This study evaluated the effects of date palm waste compost (C), applied alone or combined with biochar (BCC) or Ramial chipped wood (RCWC), on soil properties and barley yield under arid and saline conditions. Methods: A field experiment was performed in a completely random design with three replications. In addition to the unamended soil (control), treatments with compost (C), biochar + compost (BCC) and Ramial chipped wood + compost (RCWC) were tested. We monitored soil physico-chemical parameters, straw biomass, grain yield, and soluble sugar levels over two crop seasons. Results: All treatments enhanced soil fertility. However, the sodium adsorption ratio (SAR) and the cation ratio of soil structural stability (CROSS) increased in soils amended with compost alone in the second crop year. Barley (Hordeum vulgare L.) cultivated in soil amended with C and BCC produced 28% and 37% more dry biomass, respectively, in the second year, while no significant effects were observed in the first year. This may be attributed to the higher availability of nutrient content (N and P) in soils during the second year. In the first year, plants amended with BCC exhibited the highest accumulation of sucrose and fructose, with increases of up to 39% and 66%, respectively. Conclusions: Compost application did not affect barley yield during the first crop year, highlighting limited effects on soil fertility. However, C and BCC improved barley yield in the second year after application. No synergistic effect was observed between biochar, Ramial chipped wood, and compost. Future Perspective: Further studies should focus on the long-term effects of organic soil management, including salinity issues, to support sustainable agriculture in arid regions.