The material properties of semiconductor nanowires are greatly affected by electrical, optical, and chemical processes occurring at their surfaces because of the very large surface-to-volume ratio. Precise control over doping as well as the surface charge properties has been demonstrated in thin films and nanowires for fundamental physics and application-oriented research. However, surface doping behavior is expected to differ markedly from bulk doping in conventional semiconductor materials. Here, we show that placing gold nanoparticles, in controlled manner, on the surface of an insulating vanadium dioxide nanowire introduces local charge carriers in the nanowire, and one could, in principle, completely and continuously alter the material properties of the nanowire and obtain any intermediate level of conductivity. The current in the nanowire increased by nearly 3 times when gold nanoparticles of 1011 cm–2 order of density were controllably placed on the nanowire surface. A strong quadratic space-charge limited (SCL) transport behavior was also observed from the conductance curve suggesting the formation of two-dimensional (2D) electron-gas-like confined layer in the nanowire with adsorbed Au NPs. In addition to stimulating scientific interest, such unusual surface doping phenomena may lead to new applications of vanadium dioxide-based electronic, optical, and chemical sensing nanodevices.
We fabricated nanoparticle-based gas through in situ ac dielectrophoretical assembling of drop-coated SnO(2) nanoparticles to bridge the gap between electrodes with high aspect ratio. While the conventional dielectrophoresis (DEP) adopts a microfluidic system for continuous flow of the solution during the process, we just drop-coated a small amount of solution onto the electrodes and executed in situ DEP for a very short time. This is a very simple, cost-effective, time-saving, and highly reproducible process. We fixed the duration time and applied voltage for the DEP at 1 s and 1 V respectively and changed the frequencies from 1 up to 500 kHz. I-V characteristics of the samples were checked and it was found that DEP samples fabricated at 1 s, 1 V and 150 kHz conditions showed considerably higher connectivity of the nanoparticles. This can be attributed to the excellent step coverage achieved by ac DEP under those conditions. The devices drop-coated and dielectrophoretically assembled at other ac frequency conditions showed poor connectivity. Hydrogen gas sensing properties of the sensors fabricated under 1 s, 1 V and 150 kHz conditions were checked by flowing through 160 ppm H(2). The sensitivity reaches a maximum value of ~ 700% at 350 °C. The response time is ~ 200 s at 350 °C.