ABSTRACT Pulmonary fibrosis develops as a consequence of failed regeneration after injury. Analyzing mechanisms of regeneration and fibrogenesis directly in human tissue has been hampered by the lack of organotypic models and analytical techniques. In this work, we coupled ex vivo cytokine and drug perturbations of human precision-cut lung slices (hPCLS) with scRNAseq and induced a multi-lineage circuit of fibrogenic cell states in hPCLS, which we show to be highly similar to the in vivo cell circuit in a multi-cohort lung cell atlas from pulmonary fibrosis patients. Using micro-CT staged patient tissues, we characterized the appearance and interaction of myofibroblasts, an ectopic endothelial cell state and basaloid epithelial cells in the thickened alveolar septum of early-stage lung fibrosis. Induction of these states in the ex vivo hPCLS model provides evidence that the basaloid cell state was derived from alveolar type-2 cells, whereas the ectopic endothelial cell state emerged from capillary cell plasticity. Cell-cell communication routes in patients were largely conserved in the hPCLS model and anti-fibrotic drug treatments showed highly cell type specific effects. Our work provides an experimental framework for perturbational single cell genomics directly in human lung tissue that enables analysis of tissue homeostasis, regeneration and pathology. We further demonstrate that hPCLS offers novel avenues for scalable, high-resolution drug testing to accelerate anti-fibrotic drug development and translation.
Abstract With progressive digitalization of healthcare systems worldwide, large-scale collection of electronic health records (EHRs) has become commonplace. However, an extensible framework for comprehensive exploratory analysis that accounts for data heterogeneity is missing. Here we introduce ehrapy, a modular open-source Python framework designed for exploratory analysis of heterogeneous epidemiology and EHR data. ehrapy incorporates a series of analytical steps, from data extraction and quality control to the generation of low-dimensional representations. Complemented by rich statistical modules, ehrapy facilitates associating patients with disease states, differential comparison between patient clusters, survival analysis, trajectory inference, causal inference and more. Leveraging ontologies, ehrapy further enables data sharing and training EHR deep learning models, paving the way for foundational models in biomedical research. We demonstrate ehrapy’s features in six distinct examples. We applied ehrapy to stratify patients affected by unspecified pneumonia into finer-grained phenotypes. Furthermore, we reveal biomarkers for significant differences in survival among these groups. Additionally, we quantify medication-class effects of pneumonia medications on length of stay. We further leveraged ehrapy to analyze cardiovascular risks across different data modalities. We reconstructed disease state trajectories in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on imaging data. Finally, we conducted a case study to demonstrate how ehrapy can detect and mitigate biases in EHR data. ehrapy, thus, provides a framework that we envision will standardize analysis pipelines on EHR data and serve as a cornerstone for the community.
Abstract Targeted spatial transcriptomic methods capture the topology of cell types and states in tissues at single-cell and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing the spatial signals present in a tissue. This requires selecting the most informative, yet minimal, set of genes to profile (gene set selection) for which it is possible to build probes (probe design). However, current selections often rely on marker genes, precluding them from detecting continuous spatial signals or new states. We present Spapros, an end-to-end probe set selection pipeline that optimizes both gene set specificity for cell type identification and within-cell type expression variation to resolve spatially distinct populations while considering prior knowledge as well as probe design and expression constraints. We evaluated Spapros and show that it outperforms other selection approaches in both cell type recovery and recovering expression variation beyond cell types. Furthermore, we used Spapros to design a single-cell resolution in situ hybridization on tissues (SCRINSHOT) experiment of adult lung tissue to demonstrate how probes selected with Spapros identify cell types of interest and detect spatial variation even within cell types.
BCR part of the Haniffa dataset. Obtained from https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-10026/E-MTAB-10026.processed.1.zip Rehosting for easier access to the book. See: https://www.nature.com/articles/s41591-021-01329-2
bulk RNA-seq data processed by Sanger The metadata is donwloaded from bulk RNA-seq data processed by Sanger (https://cellmodelpassports.sanger.ac.uk/downloads, rnaseq_all_20220624.zip). converted to a csv file where the rows are models names and the columns are the symbols. random white space is removed.
Redistributed from GSEA. Credit goes to this https://www.gsea-msigdb.org/gsea/team.jsp team. Licensed under https://www.gsea-msigdb.org/gsea/msigdb_license_terms.jsp