Cuproptosis is a manner of mitochondrial cell death induced by copper. However, cuproptosis modulators' molecular processes in intervertebral disc degeneration (IDD) are still unclear. To better understand the processes of cuproptosis regulators in IDD, a thorough analysis of cuproptosis regulators in the diagnostic biomarkers and subtype determination of IDD was conducted. Then we collected clinical IDD samples and successfully established IDD model
This study investigated the effects of combined ovariectomy with dexamethasone treatment on rat lumbar vertebrae in comparison with osteoporosis induced via ovariectomy or dexamethasone alone, and analysis of the associated molecular mechanism.Sixty-two female Sprague-Dawley rats (3 months' old) were randomly divided into five treatment groups: an untreated baseline (BL) group; those receiving a sham operation (SHAM); those receiving a dexamethasone injection alone (DEXA); those undergoing bilateral ovariectomy (OVX); and those subjected to both ovariectomy and dexamethasone injection (OVX-DEXA). Animals in the BL group were euthanized at the beginning of the experiment, whereas animals in the remaining groups were euthanized at the end of the first month (M1), second month (M2), or third month (M3). Bone mineral density, bone microarchitecture, biomechanical properties of vertebrae, and serum levels of estrogen, amino-terminal propeptide of type I collagen (PINP), and β-C-telopeptide of type I collagen (β-CTX) were measured. In addition, we examined biglycan, runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), lipoprotein receptor-related protein-5 (LRP-5), cathepsin K (CTSK), and sclerostin mRNA expression.Bone mineral content and bone mineral density were markedly lower in the OVX-DEXA group compared with the OVX group at all time points examined. The relative bone surface (BS/TV, mm(-1), relative bone volume (BV/TV,%), and trabecular number (Tb.N, 1/mm) were markedly lower in the OVX-DEXA group compared with the remaining groups, whereas trabecular separation (Tb.Sp, mm) was markedly higher in the OVX-DEXA group compared with the remaining groups at M2 or M3. The OVX-DEXA group showed lower compressive strength and lower stiffness compared with the other groups at M2 and M3. Compressive displacement and energy absorption capacity were also markedly lower in the OVX-DEXA group compared with the OVX group at M3. Estradiol levels were markedly lower in the OVX-DEXA group compared with the other groups. Biglycan, runt-related transcription factor 2, osteoprotegerin, and lipoprotein receptor-related protein-5 were down-regulated in the DEXA, OVX, and OVX-DEXA groups compared with the BL and SHAM groups, whereas cathepsin K and sclerostin were up-regulated in the OVX-DEXA group compared with the DEXA and OVX groups.Ovariectomy combined with dexamethasone induced more serious osteoporosis in the rat lumbar spine than either ovariectomy or dexamethasone alone. The combined effect may be due to a combination of suppressed bone formation and increased bone resorption related to an estradiol deficit.
Extracts from plastrum testudinis (PTE) are active compounds that have been used to treat bone diseases in traditional Chinese medicine for thousands of years. In previous studies, we demonstrated their effects on glucocorticoid-induced osteoporosis both in vivo and in vitro . However, the mechanisms by which PTE regulates the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) in vitro remain poorly understood. In this study, rBMSCs were treated with medium (CON), PTE, osteogenic induction (OI), and a combination of PTE and OI (PTE+OI) over a 21-day period. We found that PTE significantly promoted rBMSCs osteogenic differentiation and mineralisation after 21 days of culturing. Moreover, PTE+OI further enhanced the differentiation and mineralisation process. PTE upregulated STE20, IGF1R, and p38 MAPK mRNA expression and downregulated TRAF6 mRNA expression. The extracts inhibited TRAF6 protein expression and promoted STE20, IGF1R, and phosphorylated p38 MAPK protein expression. Our results imply that PTE promotes the proliferation and osteogenic differentiation of rBMSCs by upregulating p38 MAPK, STE20, and IGF1R and downregulating TRAF6 expression, which may provide experimental evidence of the potential of PTE in the treatment of osteoporosis.
Objective To investigate the effect of the in situ screw implantation region and angle on the stability of lateral lumbar interbody fusion (LLIF) from a biomechanical perspective. Methods A validated L2‐4 finite element (FE) model was modified for simulation. The L3‐4 fused segment undergoing LLIF surgery was modeled. The area between the superior and inferior edges and the anterior and posterior edges of the vertebral body (VB) is divided into four zones by three parallel lines in coronal and horizontal planes. In situ screw implantation methods with different angles based on the three parallel lines in coronal plane were applied in Models A, B, and C (A: parallel to inferior line; B: from inferior line to midline; C: from inferior line to superior line). In addition, four implantation methods with different regions based on the three parallel lines in horizontal plane were simulated as types 1–2, 1–3, 2–2, and 2–3 (1–2: from anterior line to midline; 1–3: from anterior line to posterior line; 2–2: parallel to midline; 2–3: from midline to posterior line). L3‐4 ROM, interbody cage stress, screw‐bone interface stress, and L4 superior endplate stress were tracked and calculated for comparisons among these models. Results The L3‐4 ROM of Models A, B, and C decreased with the extent ranging from 47.9% (flexion‐extension) to 62.4% (lateral bending) with no significant differences under any loading condition. Types 2–2 and 2–3 had 45% restriction, while types 1–2 and 1–3 had 51% restriction in ROM under flexion‐extension conditions. Under lateral bending, types 2–2 and 2–3 had 70.6% restriction, while types 1–2 and 1–3 had 61.2% restriction in ROM. Under axial rotation, types 2–2 and 2–3 had 65.2% restriction, while types 1–2 and 1–3 had 59.3% restriction in ROM. The stress of the cage in types 2–2 and 2–3 was approximately 20% lower than that in types 1–2 and 1–3 under all loading conditions in all models. The peak stresses at the screw‐bone interface in types 2–2 and 2–3 were much lower (approximately 35%) than those in types 1–2 and 1–3 under lateral bending, while no significant differences were observed under flexion‐extension and axial rotation. The peak stress on the L4 superior endplate was approximately 30 MPa and was not significantly different in all models under any loading condition. Conclusions Different regions of entry‐exit screws induced multiple screw trajectories and influenced the stability and mechanical responses. However, different implantation angles did not. Considering the difficulty of implantation, the ipsilateral‐contralateral trajectory in the lateral middle region of the VB can be optimal for in situ screw implantation in LLIF surgery.
Objective To evaluate the influence of insufficient bone cement distribution on outcomes following percutaneous vertebroplasty (PVP). Methods This retrospective matched-cohort study included patients 50–90 years of age who had undergone PVP for single level vertebral compression fractures (VCFs) from February 2015 to December 2018. Insufficient (Group A)/sufficient (Group B) distribution of bone cement in the fracture area was assessed from pre- and post-operative computed tomography (CT) images. Assessments were before, 3-days post-procedure, and at the last follow-up visit (≥12 months). Result Of the 270 eligible patients, there were 54 matched pairs. On post-operative day 3 and at the last follow-up visit, significantly greater visual analogue scale (VAS) pain scores and Oswestry Disability Index (ODI) scores were obtained in Group B over Group A, while kyphotic angles (KAs) and vertebral height (VH) loss were significantly larger in Group A compared with Group B. Incidence of asymptomatic cement leakage and re-collapse of cemented vertebrae were also greater in Group A compared with Group B. Conclusions Insufficient cement distribution may relate to less pain relief and result in progressive vertebral collapse and kyphotic deformity post-PVP.
To establish a method of detecting spinal tuberculosis (TB) infection by enzyme-linked immunospot (ELlSPOT) assay and evaluate the value of CFP10/ESAT6 fusion protein for diagnosis of spinal TB.Suspected spinal TB patients were prospectively recruited in two hospitals (First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine; Nanfang Hospital, Southern Medical University) from May 2012 to December 2013. Data on clinical characteristics of the patients and conventional laboratory results were collected. Compare and analyze the positive detection rate in spinal TB diagnosis by different methods including ELISPOT detection and conventional detection methods.47 patients with spinal TB had available biopsy or surgical specimens for histopathological examination and 41 specimens had pathological features consistent with a diagnosis of TB infection. Among the spinal TB patients and non-TB disease patients,the overall sensitivity, specificity, positive predictive value, and negative predictive value of the ELISPOT assay in spinal TB diagnosis were 82.7%,87.2%,89.6%, and 79.1%,respectively; the 4 indexes of the PPD skin test were 61.5%, 46.2%, 60.4%, and 47.4%, respectively;those of the antibody detection were 55.8%, 61.5%, 65.9%, and 51.1%. The positive rate of ELISPOT was significantly higher than those of PPD skin test and antibody detection test (82.7% vs. 61.5%, Χ² =5.786, P=0.016; 82.7% vs. 55.8%, Χ² =8.847, P=0.003), but not significantly different from the positive rate of pathological examination (82.7% vs. 87.2%, Χ² =0.396, P=0.529). Moderate agreement was found between pathological examination and the ELISPOT assay (87.2%, Κ=0.498, P=0.001).With high sensitivity and specificity, the ELISPOT assay using CFP10/ESAT6 fusion protein as antigen is an effective technique for auxiliary diagnosis of spinal TB.
Background Lateral displacement of cage is a rarely seen complication of oblique lumbar interbody fusion (OLIF). To the best of our knowledge, this complication has always been revised with posterior open surgery. However, open surgery often associates with large trauma and long period of recovery. Case Presentation In the case presented, a 64‐year‐old male patient with lateral displacement of cage which consequently caused neurological symptoms after OLIF, was reported and surgically revised with an endoscopic resection and decompression technique. The surgery was performed through a posterolateral approach which was similar to transforaminal approach, with estimated blood loss of 45mL and whole operation time of 70 min. Neurological symptoms were disappeared after operation immediately and the patient was discharged 2 days later. He reported no symptoms other than mild weakness of the lower back at the last follow‐up of 12 months. Conclusion Endoscopic decompression technique may be an effective alternative to surgically treat lateral displacement of cage after OLIF with advantages of minimal invasion and quick recovery.