The current methods used to impart flame-retardant or fire-resistant properties to flexible polyurethane foams (PUFs) to meet fire safety requirements entail the use of halogenated phosphorus-based compounds. Whereas these are highly effective as flame retardants, the associated toxicity derived from halogens in the burning fumes are deadly. To address this problem, we herein present a facile and efficient method of fabricating highly fire-resistant flexible PUF using halogen-free nature-inspired coatings. All of the active ingredients used to fabricate the coatings originated from natural or widely available sources: chitosan from crustacean shells, acetic acid that is found in vinegar, and expandable graphite mined from mineral rocks, thus making this strategy environmentally friendly and sustainable. These coatings offer excellent flame-retardant properties; with a limiting oxygen index (LOI) value as high as 31%, the coated foam could potentially pass the highest levels within the British Standard 5852, which is a commonly accepted global industry standard for meeting the fire safety requirement of flexible PUF. Furthermore, cone calorimeter testing revealed the superior fire safety performance of the coated foam, including very low heat and smoke release upon burning. The flame retardancy of the coated PUFs is tunable depending on the amount of graphite employed in the coating solutions. It is anticipated that the coating strategy described here is applicable to other substrates.
An experimental investigation was performed to study the wear of a promising dental ceramic, i.e., machinable lithium disilicate glass ceramic, under lubrication conditions, in particular, to examine effects of the surface finish and applied load on wear. Our previous work has shown that a fine finish in a dry condition did not necessarily translate to the lowest wear volume due to changes in the dominant wear mechanisms. This study tested the ceramic specimens with four average surface roughness values of S a = 143 nm, 217 nm, 353 nm, and 692 nm on a reciprocating sliding friction rig against alumina balls with two applied forces of 5 N and 25 N in a bath of distilled water. Comparing with the results obtained in the dry conditions, this study shows that surface roughness of approximately 200 nm may be suitable for surface preparation of crowns made from the material in the wet and dry wear conditions in the oral environment.
The fire behaviour of radiata pine timber, treated with intumescent coatings and exposed to heat flux conditions equivalent to a high-risk bushfire attack level (BAL) is investigated. The experiment is designed for coated timber exposed to bushfire attack levels greater than 19 kW/m2 and up to 29 kW/m2 (BAL-29) in accordance with AS 3959. The timber was coated with a DFT of 400 μm of the developed intumescent formulations based on expandable graphite (EG), ammonium polyphosphate (APP) and a waterborne acrylic resin with high adhesion strength. The coated timbers were tested according to AS3959, for a BAL-29 rating, using a cone calorimeter at 25 kW/m2 for 10 min. Most of the coated samples reported a substantial reduction in the peak heat release rate (p-HRR) and average HRR with values not greater than 100 kW/m2 and 60 kW/m2, respectively. These results satisfy the requirements for bushfire-resistant timber at BAL-29 rating. Formulation 4 (F4), with EG:APP ratio of 3:1 and resin content of 45 wt.% was identified as the most cost-effective formulation. Coatings with high loading of EG and APP provided the best fire protection to the timber substrate, however, a larger char with a less compact structure is formed.
As the gold standard material for artificial joints, ultra-high-molecular-weight polyethylene (UHMWPE) generates wear debris when the material is used in arthroplasty applications. Due to the adverse reactions of UHMWPE wear debris with surrounding tissues, the life time of UHMWPE joints is often limited to 15–20 years. To improve the wear resistance and performance of the material, various attempts have been made in the past decades. This paper reviews existing improvements made to enhance its mechanical properties and wear resistance. They include using gamma irradiation to promote the cross-linked structure and to improve the wear resistance, blending vitamin E to protect the UHMWPE, filler incorporation to improve the mechanical and wear performance, and surface texturing to improve the lubrication condition and to reduce wear. Limitations of existing work and future studies are also identified.
The effect of varying the weight percentage composition (wt.%) of low-cost expandable graphite (EG), ammonium polyphosphate (APP), fibreglass (FG), and vermiculite (VMT) in polyurethane (PU) polymer was studied using a traditional intumescent flame retardant (IFR) system. The synergistic effect between EG, APP, FG, and VMT on the flame retardant properties of the PU composites was investigated using SEM, TGA, tensile strength tests, and cone calorimetry. The IFR that contained PU composites with 40 wt.% EG displayed superior flame retardant performance compared with the composites containing only 20 w.t.% or 10 w.t.% EG. The peak heat release rate, total smoke release, and carbon dioxide production from the 40 wt.% EG sample along with APP, FG, and VMT in the PU composite were 88%, 93%, and 92% less than the PU control sample, respectively. As a result, the synergistic effect was greatly influenced by the compactness of the united protective layer. The PU composite suppressed smoke emission and inhibited air penetrating the composite, thus reducing reactions with the gas volatiles of the material. SEM images and TGA results provided positive evidence for the combustion tests. Further, the mechanical properties of PU composites were also investigated. As expected, compared with control PU, the addition of flame-retardant additives decreased the tensile strength, but this was ameliorated with the addition of FG. These new PU composite materials provide a promising strategy for producing polymer composites with flame retardation and smoke suppression for construction materials.
Osteoarthritis is a common disease. However, its causes and morphological features of diseased cartilage surfaces are not well understood. The purposes of this research were (a) to develop quantitative surface characterization techniques to study human cartilages at a micron and submicron scale and (b) to investigate distinctive changes in the surface morphologies and biomechanical properties of the cartilages in different osteoarthritis grades. Diseased cartilage samples collected from osteoarthritis patients were prepared for image acquisition using two different techniques, that is, laser scanning microscopy at a micrometer scale and atomic force microscopy at a nanometer scale. Three-dimensional, digital images of human cartilages were processed and analyzed quantitatively. This study has demonstrated that high-quality three-dimensional images of human cartilage surfaces could be obtained in a hydrated condition using laser scanning microscopy and atomic force microscopy. Based on the numerical data extracted from improved image quality and quantity, it has been found that osteoarthritis evolution can be identified by specific surface features at the micrometer scale, and these features are amplitude and functional property related. At the submicron level, the spatial features of the surfaces were revealed to differ between early and advanced osteoarthritis grades. The effective indentation moduli of human cartilages effectively revealed the cartilage deterioration. The imaging acquisition and numerical analysis methods established allow quantitative studies of distinctive changes in cartilage surface characteristics and better understanding of the cartilage degradation process.