Exposure to particulate matter less than 2.5 µm in diameter (PM2.5) is a cause of concern in cities and major emission regions of northern India. An intensive field campaign involving the states of Punjab, Haryana and Delhi national capital region (NCR) was conducted in 2022 using 29 Compact and Useful PM2.5 Instrument with Gas sensors (CUPI-Gs). Continuous observations show that the PM2.5 in the region increased gradually from < 60 µg m-3 in 6-10 October to up to 500 µg m-3 on 5-9 November, which subsequently decreased to about 100 µg m-3 in 20-30 November. Two distinct plumes of PM2.5 over 500 µg m-3 are tracked from crop residue burning in Punjab to Delhi NCR on 2-3 November and 10-11 November with delays of 1 and 3 days, respectively. Experimental campaign demonstrates the advantages of source region observations to link agricultural waste burning and air pollution at local to regional scales.
An algorithm was developed to retrieve simultaneously the cloud optical thickness, effective particle radius, top height, geometrical thickness and then bottom height of a cloud layer with the spectral observation of visible, near infrared, thermal infrared, and oxygen A-band channels. The algorithm was applied to Advanced Earth Observing Satellite-II / Global Imager (ADEOS-II / GLI) dataset so as to retrieve global distribution of cloud geometrical properties. The retrieved results around Japan were compared with other observations such as ground-based active sensors and aircraft. It was found that the retrieved cloud base height was comparable, but underestimated by a few hundred meters from the ground-based active cloud radar observation even though there possibly existed a drizzling mode in the observed cloud system. The comparison suggests the algorithm works for water cloud system over ocean at least, while it is necessary to make further validation study with other studies such as ground-, space-based observations, and cloud resolving models. Based on this result, the algorithm was further applied to a global dataset and the initial result was obtained.
We propose a retrieval method of Asian dust (Yellow sand or Kosa aerosol) columnar amount around source regions using a near ultraviolet radiometry observation from space. The method simultaneously retrieves an optical thickness and mode radius of Kosa aerosol, and then derives its columnar amount. The method was applied to ADEOS-II / GLI data in the spring of 2003 around Taklimakan desert source region, inland China. The retrieved optical thickness and mode radius were about 0.34 and 1.75 μm, respectively, at a validation site. They are comparable to the in situ observations conducted within the framework of ADEC project. The estimated columnar amount around a validation site is about 2.77 g m-2, which seems reasonable under a relatively calm situation. The method should be further validated with a regional model simulation study, and then it is useful to monitor Asian dust around source regions from space in the future.
It is of great interest to investigate the properties on the cloud optical, microphysical, and geometrical parameters, in particular, of low-level marine clouds which play crucial influence on the global climate system. Top height, base height, and geometrical thickness of cloud layer are considered here as cloud geometrical parameters. These parameters are very important to retrieve, because top and base heights are the factors which govern the strength of greenhouse effect through the thermal radiation from/to cloud layer, whereas the geometrical thickness is the key parameter for the estimation of gaseous absorption in cloud layer where multiple scattering process dominates. In this study, an algorithm was developed to retrieve simultaneously cloud optical thickness, effective particle radius, top height, and geometrical thickness of cloud layer from the spectral information of visible, near infrared, thermal infrared, and oxygen A band channels. This algorithm was applied to FIRE (First ISCCP Regional Experiment, 1987) airborne data which included the above four channels and targeted at the low-level marine clouds off the coast of California in summer. The retrieved results seems to be comparable to the in situ microphysical observation although further validation studies are required for the cloud geometrical parameters in particular.