This paper is aimed at a homogenization problem for a parabolic variational inequality with unilateral constraints. The constraints on solutions are imposed on disk-shaped subsets belonging to the boundary of the domain and forming a periodic structure, so that one has a problem with rapidly oscillating boundary conditions on a part of the boundary. Under certain conditions on the relation between the period of the structure and the radius of the disks, the homogenized problem is obtained. With the help of special auxiliary functions, the solutions of the original variational inequalities are shown to converge to the solution of the homogenized problem in Sobolev space as the period of the structure tends to zero.
Our main interest in this paper is the study of homogenised limit of a parabolic equation with a nonlinear dynamic boundary condition of the micro-scale model set on a domain with periodically place particles. We focus on the case of particles (or holes) of critical diameter with respect to the period of the structure. Our main result proves the weak convergence of the sequence of solutions of the original problem to the solution of a reaction-diffusion parabolic problem containing a `strange term'. The novelty of our result is that this term is a nonlocal memory solving an ODE. We prove that the resulting system satisfies a comparison principle.