Bioethanol production from lignocellulosic biomass is still struggling with many obstacles. One of them is lignocellulosic inhibitors. The aim of this review is to discuss the most known inhibitors. Additionally, the review addresses different detoxification methods to degrade or to remove inhibitors from lignocellulosic hydrolysates. Inhibitors are formed during the pretreatment of biomass. They derive from the structural polymers-cellulose, hemicellulose and lignin. The formation of inhibitors depends on the pretreatment conditions. Inhibitors can have a negative influence on both the enzymatic hydrolysis and fermentation of lignocellulosic hydrolysates. The inhibition mechanisms can be, for example, deactivation of enzymes or impairment of vital cell structures. The toxicity of each inhibitor depends on its chemical and physical properties. To decrease the negative effects of inhibitors, different detoxification methods have been researched. Those methods focus on the chemical modification of inhibitors into less toxic forms or on the separation of inhibitors from lignocellulosic hydrolysates. Each detoxification method has its limitations on the removal of certain inhibitors. To choose a suitable detoxification method, a deep molecular understanding of the inhibition mechanism and the inhibitor formation is necessary.
Because of the social, economic, and environmental issues linked with fossil resources, there is a global interest in finding alternative renewable and sustainable resources for energy and materials production. Biomass could be one such renewable material that is available in large quantities. However, biomass physicochemical properties are a challenge for its industrial application. Recently, the torrefaction process was developed to improve the fuel characteristics of biomass. However, in recent days, energy production has slowly been shifting towards solar and wind, and restrictions on thermal power plants are increasing. Thus, there will be a need to find alternative market opportunities for the torrefaction industry. In that regard, there is a quest to find alternative applications of torrefaction products other than energy production. This paper presents a couple of alternative applications of torrefied biomass. Torrefaction process can be used as a biomass pretreatment option for biochemical conversion processes. The other alternative applications of torrefied biomass are using it as a reducing agent in metallurgy, as a low-cost adsorbent, in carbon-black production, and as a filler material in plastics. The use of torrefied biomass in fermentation and steel production is validated through a few laboratory experiments, and the results are looking attractive. The lower sugar yield is the main challenge in the case of the microbial application of torrefied biomass. The lower mechanical strength is the challenge in the case of using it as a reducing agent in a blast furnace. To date, very few studies are available in the literature for all the highlighted applications of torrefied biomass. There is a need for extensive experimental validation to identify the operational feasibility of these applications.
Lignin is a natural polymer, one that has an abundant and renewable resource in biomass. Due to a tendency towards the use of biochemicals, the efficient utilization of lignin has gained wide attention. The delignification of lignocellulosic biomass makes its fractions (cellulose, hemicellulose, and lignin) susceptible to easier transformation to many different commodities like energy, chemicals, and materials that could be produced using the biorefinery concept. This review gives an overview of the field of lignin separation from lignocellulosic biomass and changes that occur in the biomass during this process, as well as taking a detailed look at the influence of parameters that lead the process of dissolution. According to recent studies, a number of ionic liquids (ILs) have shown a level of potential for industrial scale production in terms of the pretreatment of biomass. ILs are perspective green solvents for pretreatment of lignocellulosic biomass. These properties in ILs enable one to disrupt the complex structure of lignocellulose. In addition, the physicochemical properties of aprotic and protic ionic liquids (PILs) are summarized, with those properties making them suitable solvents for lignocellulose pretreatment which, especially, target lignin. The aim of the paper is to focus on the separation of lignin from lignocellulosic biomass, by keeping all components susceptible for biorefinery processes. The discussion includes interaction mechanisms between lignocellulosic biomass subcomponents and ILs to increase the lignin yield. According to our research, certain PILs have potential for the cost reduction of LC biomass pretreatment on the feasible separation of lignin.
Nanocellulose aerogels are highly porous structures with excellent mechanical properties, structural stability, large surface areas and high loading capacities. They are sustainable, biocompatible, biodegradable polymeric materials suitable for various medical applications. Nanocellulose aerogels are excellent scaffold materials for tissue engineering applications, due to the interconnected porous structure which enables the proper communication of cells for cell adhesion, proliferation and growth in suitable microenvironments. This chapter elaborates on the various tissue engineering applications of nanocellulose aerogel scaffolds.
Abstract Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μm in the middle and a 200 μm wide and 2600 μm long counter electrode surrounding it from three sides in a U‐shape. The connection pads (1000×1500 μm) were located at the edge of a sensor‐array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU‐8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three‐electrode electrochemical system to characterize the fabricated sensor‐array chip. The results show that the current density depends on the electrode potential sweep rate ν. Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates (ν≤0.01 V s −1 ) the steady‐state signal is achieved and the electrodes behave as micro‐electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements.