Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance where backpack carriage is involved. The purpose of this study was to investigate the impact of load magnitude and velocity on leg stiffness. We also explored the relationship between leg stiffness and running joint work. Thirty-one healthy participants ran overground at 3 velocities (3.0, 4.0, 5.0 m·s-1), whilst carrying 3 load magnitudes (0%, 10%, 20% weight). Leg stiffness was derived using the direct kinetic-kinematic method. Joint work data was previously reported in a separate study. Linear models were used to establish relationships between leg stiffness and load magnitude, velocity, and joint work. Our results found that leg stiffness did not increase with load magnitude. Increased leg stiffness was associated with reduced total joint work at 3.0 m·s-1, but not at faster velocities. The association between leg stiffness and joint work at slower velocities could be due to an optimal covariation between skeletal and muscular components of leg stiffness, and limb attack angle. When running at a relatively comfortable velocity, greater leg stiffness may reflect a more energy efficient running pattern.
Background: There is convincing evidence for the benefits of resistance training on vertical jump improvements, but little evidence to guide optimal training prescription. The inability to detect small between modality effects may partially reflect the use of ANOVA statistics. This study represents the results of a sub-study from a larger project investigating the effects of two resistance training methods on load carriage running energetics. Bayesian statistics were used to compare the effectiveness of isoinertial resistance against speed-power training to change countermovement jump (CMJ) and squat jump (SJ) height, and joint energetics.
Methods: Active adults were randomly allocated to either a six-week isoinertial (n = 16; calf raises, leg press, and lunge), or a speed-power training program (n = 14; countermovement jumps, hopping, with hip flexor training to target pre-swing running energetics). Primary outcome variables included jump height and joint power. Bayesian mixed modelling and Functional Data Analysis were used, where significance was determined by a non-zero crossing of the 95% Bayesian Credible Interval (CrI).
Results: The gain in CMJ height after isoinertial training was 1.95 cm (95% CrI [0.85–3.04] cm) greater than the gain after speed-power training, but the gain in SJ height was similar between groups. In the CMJ, isoinertial training produced a larger increase in power absorption at the hip by a mean 0.018% (equivalent to 35 W) (95% CrI [0.007–0.03]), knee by 0.014% (equivalent to 27 W) (95% CrI [0.006–0.02]) and foot by 0.011% (equivalent to 21 W) (95% CrI [0.005–0.02]) compared to speed-power training.
Discussion: Short-term isoinertial training improved CMJ height more than speed-power training. The principle adaptive difference between training modalities was at the level of hip, knee and foot power absorption.
Exposure to the cold can negatively affect muscle performance. This study compared the effects of two different full-length, lower body, next-to-skin garments on thermal sensation, countermovement jump (CMJ) height and knee frontal plane angle upon landing following cold exposure against a control. After familiarisation, 13 male and 11 female recreationally active adults attended three separate laboratory testing sessions where a randomly assigned next-to-skin garment was used (compression, thermal and control (shorts)). A pre- and post-testing protocol comprising CMJ and drop landings interspersed with a sedentary cooling period of 40 min at 0 °C was adopted. High-speed motion analysis and subjective ratings of thermal sensation were recorded. Exposure to the cold significantly reduced thermal sensation (p < 0.001) scores and CMJ height (p < 0.001). Only female participants felt significantly warmer (p ≤ 0.009) in the next-to-skin garments. Losses in CMJ height were significantly reduced by the next-to-skin garments compared to the control with the thermal garment producing better results. There was little change in knee frontal plane angle upon landing in all the garments tested. Ambient cooling at 0 °C for 40 min had a significant effect on CMJ height and thermal sensation but not knee valgus upon landing. Participants in winter sports should consider next-to-skin garments in conjunction with proper warm-ups and re-warming techniques to protect themselves from the negative effects of the cold.