This paper describes the Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project, which promotes the use of a unique model dataset, performed with the Community Earth System Model, with the Whole Atmosphere Community Climate Model as its atmospheric component [CESM1(WACCM)], to investigate global and regional impacts of geoengineering. The performed simulations were designed to achieve multiple simultaneous climate goals, by strategically placing sulfur injections at four different locations in the stratosphere, unlike many earlier studies that targeted globally averaged surface temperature by placing injections in regions at or around the equator. This advanced approach reduces some of the previously found adverse effects of stratospheric aerosol geoengineering, including uneven cooling between the poles and the equator and shifts in tropical precipitation. The 20-member ensemble increases the ability to distinguish between forced changes and changes due to climate variability in global and regional climate variables in the coupled atmosphere, land, sea ice, and ocean system. We invite the broader community to perform in-depth analyses of climate-related impacts and to identify processes that lead to changes in the climate system as the result of a strategic application of stratospheric aerosol geoengineering.
Abstract. Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH) and by ~2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry) and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.
Abstract. Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. A detailed assessment of responses and impacts of such an intervention is needed with multiple global models to support societal decisions regarding the use of these approaches to help address climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI). The protocol and simulations are aimed at enabling community assessment of responses of the Earth system to solar climate intervention. ARISE-SAI simulations are designed to be more policy-relevant than existing large ensembles or multi-model simulation sets. We describe in detail the first set of ARISE-SAI simulations, ARISE-SAI-1.5, which utilize a moderate emissions scenario, introduce stratospheric aerosol injection at ∼21.5 km in the year 2035, and keep global mean surface air temperature near 1.5 ∘C above the pre-industrial value utilizing a feedback or control algorithm. We present the detailed setup, aerosol injection strategy, and preliminary climate analysis from a 10-member ensemble of these simulations carried out with the Community Earth System Model version 2 with the Whole Atmosphere Community Climate Model version 6 as its atmospheric component.
The global transport of the surface‐emitted short‐lived passive tracers radon and methyl iodide is simulated in a cloud‐resolving Global Climate Model (GCM) for the first time and compared against simulations with a conventional GCM in which cloud processes are not resolved. Both models are operated in chemical transport mode in which the large scale flow is set to observationally derived dynamic and thermodynamic fields from a meteorological reanalysis. Simulated vertical profiles of tracers concentrations from both models are compared with profiles observed in situ. The comparisons suggest that the cloud‐resolving GCM is, to a small degree, better than the conventional GCM in reproducing the vertical gradients and hence the convective entrainment and detrainment of passive tracers. Contrasting only simulated climatological maps of tracers concentrations from the two models, we find consistent and appreciable relative differences that create a quadrupole pattern in the vertical direction. Relative to the conventional GCM, the tracer concentrations from the cloud‐resolving GCM results are depleted from the surface to 1 km and from 4 to 12 Km and enriched from 1 to 4 km and above 12 km. This might have important implications for climate and atmospheric chemistry simulations but require further investigations.
Abstract. Projections of future atmospheric composition change and its impacts on air quality and climate depend heavily on chemistry-climate models that allow us to investigate the effects of changing emissions and meteorology. These models are imperfect as they rely on our understanding of the chemical, physical and dynamical processes governing atmospheric composition, on the approximations needed to represent these numerically, and on the limitations of the observations required to constrain them. Model intercomparison studies show substantial diversity in results that reflect underlying uncertainties, but little progress has been made in explaining the causes of this or in identifying the weaknesses in process understanding or representation that could lead to improved models and to better scientific understanding. Global sensitivity analysis provides a valuable method of identifying and quantifying the main causes of diversity in current models. For the first time, we apply Gaussian process emulation with three independent global chemistry transport models to quantify the sensitivity of ozone and hydroxyl radicals (OH) to important climate-relevant variables, poorly-characterized processes and uncertain emissions. We show a clear sensitivity of tropospheric ozone to atmospheric humidity and precursor emissions which is similar for the models, but find large differences between models for methane lifetime, highlighting substantial differences in the sensitivity of OH to primary and secondary production. This approach allows us to identify key areas where model improvements are required while providing valuable new insight into the processes driving tropospheric composition change.
Recent observational evidences show ongoing net ozone depletion in the tropical lower stratosphere (LS) since the late 20th century, in contrast to the overall stratospheric ozone recovery following controls in the Montreal Protocol to limit the production of long-lived ozone depleting substances. Such behavior is currently thought to be driven by dynamical transport accelerated by global warming. In contrast, the role of chemistry, i.e., the enhanced ozone depletion due to emissions of halogenated ozone-depleting very short-lived substances (VSLS) has been considered to be unimportant. Here we employ a chemistry-climate model with a comprehensive chemical scheme to demonstrate that VSLS chemistry accounts for around a quarter of the observed tropical LS negative ozone trend in 1998-2018. We attribute such an effect to chemical reactions with VSLS from natural and anthropogenic emissions in concert. Future projections show the persistence of the currently unaccounted for contribution of VSLS to ozone loss throughout the 21st century in the tropical LS, the only region of the global stratosphere not projecting an ozone recovery by 2100. Our results show evidence for the need of mitigation strategies for regulating anthropogenic VSLS emissions to preserve the present and future ozone layer in low latitudes.