Gamma-amino butyric acid (GABA) is believed to be the principal inhibitory neurotransmitter in the mammalian central nervous system, a function that has been extended to a number of invertebrate systems. The presence of GABA in the marine demosponge Chondrilla nucula was verified using immunofluorescence detection and high-pressure liquid chromatography. A strong GABA-like immunoreactivity (IR) was found associated with choanocytes, exopinacocytes, endopinacocytes lining inhalant, and exhalant canals, as well as in archaeocytes scattered in the mesohyl. The capacity to synthesize GABA from glutamate and to transport it into the vesicles was confirmed by the presence in C. nucula of glutamate decarboxylase (GAD) and vesicular GABA transporters (vGATs), respectively. GAD-like and vGAT-like IR show the same distribution as GABA-like IR. Supporting the similarity between sponge and mammalian proteins, bands with an apparent molecular weight of about 65-67 kDa and 57 kDa were detected using antibodies raised against mammalian GAD and vGAT, respectively. A functional metabotropic GABA(B)-like receptor is also present in C. nucula. Indeed, both GABA(B) R1 and R2 isoforms were detected by immunoblot and immunofluorescence. Also in this case, IR was found in choanocytes, exopinacocytes, and endopinacocytes. The content of GABA in C. nucula amounts to 1225.75 +/- 79 pmol/mg proteins and GABA is released into the medium when sponge cells are depolarized. In conclusion, this study is the first indication of the existence of the GABA biosynthetic enzyme GAD and of the GABA transporter vGAT in sponges, as well as the first demonstration that the neurotransmitter GABA is released extracellularly.
Abstract Purpose This study presents the implementation of a web and mobile application within a clinical trial at Giannina Gaslini Children’s Hospital, aimed at simplifying questionnaire completion for Pectus Excavatum condition, including medical history, preoperative, postoperative, and follow-up evaluations. The ultimate aim focuses on enhancing data collection efficiency, reducing errors, and improving patient engagement within a digital healthcare framework. Methods The approach involved careful design based on clinician input, resulting in an intuitive application structure with three main screens. XTENS managed data, and Ionic facilitated cross-platform app development, ensuring secure and adaptable data handling. Results Preliminary analysis showcased successful patient enrollment, balanced representation across treatment groups and genders. Notably, cryoanalgesia demonstrated significantly reduced hospitalization days compared to standard therapy, validating treatment efficacy. Conclusion This work signifies a step towards modernizing healthcare through digital transformation and patient-centered models. The application shows promise in streamlined data collection and patient engagement, although improvements in multilingual support, data validation, and incentivizing questionnaire completion are warranted. Overall, this study highlights the potential of digital health solutions in revolutionizing healthcare practices, fostering patient involvement, and improving care quality.
Diffusion kurtosis imaging (DKI) has undisputed advantages over the more classical diffusion magnetic resonance imaging (dMRI) as witnessed by the fast-increasing number of clinical applications and software packages widely adopted in brain imaging. However, in the neonatal setting, DKI is still largely underutilized, in particular in spinal cord (SC) imaging, because of its inherently demanding technological requirements. Due to its extreme sensitivity to non-Gaussian diffusion, DKI proves particularly suitable for detecting complex, subtle, fast microstructural changes occurring in this area at this early and critical stage of development, which are not identifiable with only DTI. Given the multiplicity of congenital anomalies of the spinal canal, their crucial effect on later developmental outcome, and the close interconnection between the SC region and the brain above, managing to apply such a method to the neonatal cohort becomes of utmost importance. This study will (i) mention current methodological challenges associated with the application of advanced dMRI methods, like DKI, in early infancy, (ii) illustrate the first semi-automated pipeline built on Spinal Cord Toolbox for handling the DKI data of neonatal SC, from acquisition setting to estimation of diffusion measures, through accurate adjustment of processing algorithms customized for adult SC, and (iii) present results of its application in a pilot clinical case study. With the proposed pipeline, we preliminarily show that DKI is more sensitive than DTI-related measures to alterations caused by brain white matter injuries in the underlying cervical SC.
Choosing the most appropriate denoising method to improve the quality of diagnostic images maximally is key in pre-processing of diffusion MRI images. Recent advancements in acquisition and reconstruction techniques have questioned traditional noise estimation methods favoring adaptive denoising frameworks, circumventing the need to know a priori information that is hardly available in a clinical setting. In this observational study, we compared two innovative adaptive techniques sharing some features, Patch2Self and Nlsam, through application on reference adult data at 3T and 7T. The primary aim was identifying the most effective method in case of Diffusion Kurtosis Imaging (DKI) data - particularly susceptible to noise and signal fluctuations - at 3T and 7T fields. A side goal consisted of investigating the dependence of kurtosis metrics' variability with respect to the magnetic field on the adopted denoising methodology.For comparison purposes, we focused on qualitative and quantitative analysis of DKI data and related microstructural maps before and after applying the two denoising approaches. Specifically, we assessed computational efficiency, preservation of anatomical details via perceptual metrics, consistency of microstructure model fitting, alleviation of degeneracies in model estimation, and joint variability with varying field strength and denoising method.Accounting for all these factors, Patch2Self framework has turned out to be specifically suitable for DKI data, with improving performance at 7T. Nlsam method is more robust in alleviating degenerate black voxels while introducing some blurring, which in turn is reflected in an overall loss of image sharpness. Regarding the impact of denoising on field-dependent variability, both methods have been shown to make variations from standard to Ultra-High Field more concordant with theoretical evidence, claiming that kurtosis metrics are sensitive to susceptibility-induced background gradients, directly proportional to the magnetic field strength and sensitive to the microscopic distribution of iron and myelin.This study serves as a proof-of-concept stressing the need for an accurate choice of a denoising methodology, specifically tailored for the data under analysis and allowing higher spatial resolution acquisition within clinically compatible timings, with all the potential benefits that improving suboptimal quality of diagnostic images entails.
High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development.
Metastasis is a dynamic process involving the dissemination of circulating tumor cells (CTCs) through blood flow to distant tissues within the body. Nevertheless, the development of an in vitro platform that dissects the crucial steps of metastatic cascade still remains a challenge. We here developed an in vitro model of extravasation composed of (i) a single channel-based 3D cell laden hydrogel representative of the metastatic site, (ii) a circulation system recapitulating the bloodstream where CTCs can flow. Two polymers (i.e., fibrin and alginate) were tested and compared in terms of mechanical and biochemical proprieties. Computational fluid-dynamic (CFD) simulations were also performed to predict the fluid dynamics within the polymeric matrix and, consequently, the optimal culture conditions. Next, once the platform was validated through perfusion tests by fluidically connecting the hydrogels with the external circuit, highly metastatic breast cancer cells (MDA-MB-231) were injected and exposed to physiological wall shear stress (WSS) conditions (5 Dyn/cm2) to assess their migration toward the hydrogel. Results indicated that CTCs arrested and colonized the polymeric matrix, showing that this platform can be an effective fluidic system to model the first steps occurring during the metastatic cascade as well as a potential tool to in vitro elucidate the contribution of hemodynamics on cancer dissemination to a secondary site.