An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Identifying white matter (WM) tracts to locate eloquent areas for preoperative surgical planning is a challenging task. Manual WM tract annotations are often used but they are time-consuming, suffer from inter- and intra-rater variability, and noise intrinsic to diffusion MRI may make manual interpretation difficult. As a result, in clinical practice direct electrical stimulation is necessary to precisely locate WM tracts during surgery. A measure of WM tract segmentation unreliability could be important to guide surgical planning and operations. In this study, we use deep learning to perform reliable tract segmentation in combination with uncertainty quantification to measure segmentation unreliability. We use a 3D U-Net to segment white matter tracts. We then estimate model and data uncertainty using test time dropout and test time augmentation, respectively. We use a volume-based calibration approach to compute representative predicted probabilities from the estimated uncertainties. In our findings, we obtain a Dice of ≈0.82 which is comparable to the state-of-the-art for multi-label segmentation and Hausdorff distance <10
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Accurate stroke lesion segmentation plays a pivotal role in stroke rehabilitation research, to provide lesion shape and size information which can be used for quantification of the extent of the stroke and to assess treatment efficacy. Recently, automatic segmentation algorithms using deep learning techniques have been developed and achieved promising results. In this report, we present our stroke lesion segmentation model based on nnU-Net framework, and apply it to the Anatomical Tracings of Lesions After Stroke (ATLAS v2.0) dataset. Furthermore, we describe an effective post-processing strategy that can improve some segmentation metrics. Our method took the first place in the 2022 MICCAI ATLAS Challenge with an average Dice score of 0.6667, Lesion-wise F1 score of 0.5643, Simple Lesion Count score of 4.5367, and Volume Difference score of 8804.9102. Our code and trained model weights are publicly available at https://github.com/King-HAW/ATLAS-R2-Docker-Submission.
Accurate segmentation of brain resection cavities (RCs) aids in postoperative analysis and determining follow-up treatment. Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique, but require large annotated datasets for training. Annotation of 3D medical images is time-consuming, requires highly-trained raters, and may suffer from high inter-rater variability. Self-supervised learning strategies can leverage unlabeled data for training. We developed an algorithm to simulate resections from preoperative magnetic resonance images (MRIs). We performed self-supervised training of a 3D CNN for RC segmentation using our simulation method. We curated EPISURG, a dataset comprising 430 postoperative and 268 preoperative MRIs from 430 refractory epilepsy patients who underwent resective neurosurgery. We fine-tuned our model on three small annotated datasets from different institutions and on the annotated images in EPISURG, comprising 20, 33, 19 and 133 subjects. The model trained on data with simulated resections obtained median (interquartile range) Dice score coefficients (DSCs) of 81.7 (16.4), 82.4 (36.4), 74.9 (24.2) and 80.5 (18.7) for each of the four datasets. After fine-tuning, DSCs were 89.2 (13.3), 84.1 (19.8), 80.2 (20.1) and 85.2 (10.8). For comparison, inter-rater agreement between human annotators from our previous study was 84.0 (9.9). We present a self-supervised learning strategy for 3D CNNs using simulated RCs to accurately segment real RCs on postoperative MRI. Our method generalizes well to data from different institutions, pathologies and modalities. Source code, segmentation models and the EPISURG dataset are available at https://github.com/fepegar/ressegijcars .
Purpose: Transrectal ultrasound (TRUS)‐guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS‐guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI‐guided biopsy requires special equipment and training and a longer procedure time. MRI‐TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI‐TRUS‐guided biopsy increases the yield of cancer positive biopsies. In this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state‐of‐the‐art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side‐firing TRUS probe and a 1.5 T pelvic phased‐array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end‐firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root‐mean‐square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State‐of‐the‐art MRI‐TRUS fusion methods report RMSE of 3.06–2.07 mm. Conclusions: MAPPER aligns MRI and TRUS imagery without manual intervention ensuring efficient, reproducible registration. MAPPER has a similar RMSE to state‐of‐the‐art methods that require manual intervention.
Diffusion MRI and tractography hold great potential for surgery planning, especially to preserve eloquent white matter during resections. However, fiber tract reconstruction requires an expert with detailed understanding of neuroanatomy. Several automated approaches have been proposed, using different strategies to reconstruct the white matter tracts in a supervised fashion. However, validation is often limited to comparison with manual delineation by overlap-based measures, which is limited in characterizing morphological and topological differences. In this work, we set up a fully automated pipeline based on anatomical criteria that does not require manual intervention, taking advantage of atlas-based criteria and advanced acquisition protocols available on clinical-grade MRI scanners. Then, we extensively validated it on epilepsy patients with specific focus on language-related bundles. The validation procedure encompasses different approaches, including simple overlap with manual segmentations from two experts, feasibility ratings from external multiple clinical raters and relation with task-based functional MRI. Overall, our results demonstrate good quantitative agreement between automated and manual segmentation, in most cases better performances of the proposed method in qualitative terms, and meaningful relationships with task-based fMRI. In addition, we observed significant differences between experts in terms of both manual segmentation and external ratings. These results offer important insights on how different levels of validation complement each other, supporting the idea that overlap-based measures, although quantitative, do not offer a full perspective on the similarities and differences between automated and manual methods.
Background The piriform cortex (PC) occupies both banks of the endorhinal sulcus and has an important role in the pathophysiology of temporal lobe epilepsy (TLE). A recent study showed that resection of more than 50% of PC increased the odds of becoming seizure free by a factor of 16.Objective We report the feasibility of manual segmentation of PC and application of the Geodesic Information Flows (GIF) algorithm to automated segmentation, to guide resection.Methods Manual segmentation of PC was performed by two blinded independent examiners in 60 patients with TLE (55% Left TLE, 52% female) with a median age of 35 years (IQR, 29–47 years) and 20 controls (60% Women) with a median age of 39.5 years (IQR, 31–49). The GIF algorithm was used to create an automated pipeline for parcellating PC which was used to guide excision as part of temporal lobe resection for TLE.Results Right PC was larger in patients and controls. Parcellation of PC was used to guide anterior temporal lobe resection, with subsequent seizure freedom and no visual field or language deficit.Conclusion Reliable segmentation of PC is feasible and can be applied prospectively to guide neurosurgical resection that increases the chances of a good outcome from temporal lobe resection for TLE.