Methylammonium lead halide perovskite has emerged as a new class of low-temperature-processed high-performance semiconductors for optoelectronics, but with photoresponse limited to the UV-visible region and low environmental stability. Herein, we report a flexible planar photodetector based on MAPbI3 microarrays integrated with NaYF4:Yb/Er upconversion nanoparticles (UCns) that offers promise for future high performance and long-term environmental stability. The promise derives from the confluence of several factors, including significantly enhanced photons absorption in the visible spectrum, efficient energy transition in the near-infrared (NIR) region, and inhibition of water attack by the hydrophobic UCns capping layer. The UCns layer aided in remarkably enhanced photodetection capability in the visible spectrum with detectivity (D*) reaching 5.9 × 1012 Jones, among the highest reported values, due to the increased photocarrier lifetime and decreased reflectivity. Excellent NIR photoresponse with spectral responsivity (R) and D* as high as 0.27 A W-1 and 0.76 × 1012 Jones were obtained at 980 nm, respectively, superior to the reported values of state-of-the-art organic-perovskite NIR photodetectors. Moreover, the hydrophobic UCns capping layer serving as a moisture inhibitor allowed significantly enhanced long-term environmental stability, e.g., 70% vs 27% performance retained after 1000 h exposure in 30-40% RH humidity air without encapsulation for the bilayer and the neat MAPbI3 devices, respectively. These results suggest that the composite based on perovskite and UCns is promising for constructing high-performance broadband optoelectronic devices with long-term stability.
This work describes a high-yield extracellular biosynthesis of ZnS QDs via a unique molecular mediation mechanism driven by the mixed sulfate reducing bacteria (SRB). The mixed SRB have obtained the highest ever ZnS QD biosynthesis rate of 35.0–45.0 g/(L·month). The biogenic ZnS QDs with an average crystallite size (ACS) of 6.5 nm have greater PL activity and better uniformity than that of a chemical route. Peculiar extracellular proteins (EPs) with molecular weights of approximately 65 and 14 kDa specially adhere to the ZnS QDs, which cover extraordinarily high contents of acidic amino acids (14.0 mol % Glu and 13.0 mol % Asp) and of nonpolar amino acids (12.0 mol % Ala, 11.0 mol % Gly, and 7.0 mol % Phe), for novel molecular mediation. The vast amount of negative charges in Glu and Asp guides the strong absorption between the EPs and Zn2+ via electrostatic attraction to reach a maximum absorption capacity of 745.9 mg/g within 2.0 h, motivating large and rapid nucleation as the first step of biosynthesis. Meanwhile, bridging and interlinkage occur inside the EPs or between the EPs via hydrophobic interactions dominated by the nonpolar amino acids, resulting in the formation of massive microcavities to control and restrict the growth of ZnS QDs as a template. The novel molecular mediation mechanism triggered by the peculiar EPs with an extraordinary amino acid composition and structure accounts for the high-yield biosynthesis of ZnS QDs. The mixed SRB have also successfully fabricated other metal sulfide QDs, including PbS, CuS, and CdS, through the novel molecular mediation.
Abstract Low-dimensional metal halide perovskites have emerged as promising alternatives to the traditional three-dimensional (3D) components, due to their greater structural tunability and environmental stability. Dion-Jacobson (DJ) phase two-dimensional (2D) perovskites, which are formed by incorporating bulky organic diammonium cations into inorganic frameworks that comprises a symmetrically layered array, have recently attracted increasing research interest. The structure-property characteristics of DJ phase perovskites endow them with a unique combination of photovoltaic efficiency and stability, which has led to their impressive employment in perovskite solar cells (PSCs). Here, we review the achievements that have been made to date in the exploitation of DJ phase perovskites in photovoltaic applications. We summarize the various ligand designs, optimization strategies and applications of DJ phase PSCs, and examine the current understanding of the mechanisms underlying their functional behavior. Finally, we discuss the remaining bottlenecks and future outlook for these promising materials, and possible development directions of further commercial processes.
A ternary strategy is viable to minimize the trade-off between short-circuit current density (Jsc) and open-circuit voltage (Voc) in organic solar cells. Generally, the ternary OSCs can achieve a higher PCE than the binary counterparts by subtly utilizing the particular photoelectric properties of the third material. In this regard, we choose BTP-CC with a higher-lying LUMO level based on a fused TPBT (dithienothiophen[3.2-b]-pyrrolobenzothiadiazole) central framework and CC (2-(6-oxo-5,6-dihydro-4H-cyclopenta [b]thiophen-4-ylidene) malononitrile) flanking groups as the third component to broaden the light-absorption spectrum, regulate the bulk heterojunction (BHJ) morphology, improve the Voc, and reduce the charge recombination in OSCs. In addition, BTP-CC demonstrates intense intermolecular energy transfer to Y6 by fluorescence resonance energy transfer (FRET) pathway, which is due to the photoluminescence (PL) spectrum of BTP-CC covering the absorption region of Y6. The PM6:Y6:BTP-CC based ternary OSC achieves a champion PCE of 17.55%. Further investigation indicates that introduction of BTP-CC could reduce the trap states in OSCs, leading to an increased charge carrier density. Moreover, the incorporation of BTP-CC could improve the device stability. These results demonstrated that BTP-CC is important in improving the photovoltaic performance of ternary OSCs, and this work also provides a guideline for constructing ideal ternary OSCs in the future.
Perovskite solar cells (PSCs) have emerged as a promising candidate for next-generation thin-film photovoltaic technology owing to their excellent optoelectronic properties and cost-effectiveness. To gain the full potential of device performance, an in-depth understanding of the surface/interface science is an urgent need. Here, we present a review of molecularly engineered studies on interface modifications of PSCs. We elaborate a systematic classification of the existing optimization techniques employed in molecularly engineered perovskite and interface materials and analyze the insights underlying the reliability issues and functional behaviors. The achievements allow us to highlight the crucial strengths of molecular design for further tailoring of the interfacial properties, mitigating the nonradiative losses, optimizing the device performance, and retarding the degradation process of PSCs. Finally, the remaining challenges and potential development directions of molecularly engineered interfaces for high-performance and stable PSCs are also proposed.
The two-dimensional (2D) perovskites stabilized by alternating cations in the interlayer space (ACI) define a new type of structure with different physical properties than the more common Ruddlesden–Popper counterparts. However, there is a lack of understanding of material crystallization in films and its influence on the morphological/optoelectronic properties and the final photovoltaic devices. Herein, we undertake in situ studies of the solidification process for ACI 2D perovskite (GA)(MA)nPbnI3n+1 (⟨n⟩ = 3) from ink to solid-state semiconductor, using solvent mixture of DMSO:DMF (1:10 v/v) as the solvent and link this behavior to solar cell devices. The in situ grazing-incidence X-ray scattering (GIWAXS) analysis reveals a complex journey through disordered sol–gel precursors, intermediate phases, and ultimately to ACI perovskites. The intermediate phases, including a crystalline solvate compound and the 2D GA2PbI4 perovskite, provide a scaffold for the growth of the ACI perovskites during thermal annealing. We identify 2D GA2PbI4 to be the key intermediate phase, which is strongly influenced by the deposition technique and determines the formation of the 1D GAPbI3 byproducts and the distribution of various n phases of ACI perovskites in the final films. We also confirm the presence of internal charge transfer between different n phases through transient absorption spectroscopy. The high quality ACI perovskite films deposited from solvent mixture of DMSO:DMF (1:10 v/v) deliver a record power conversion efficiency of 14.7% in planar solar cells and significantly enhanced long-term stability of devices in contrast to the 3D MAPbI3 counterpart.
Research on the addition of suitable materials into perovskite film for improved quality is important to fabricate efficient and stable perovskite solar cells. An attempt to enhance the quality of perovskite is performed by incorporation of a bifunctional hydroxylamine hydrochloride (HaHc) into pristine perovskite solution. On the one hand, the chloride ion in HaHc changes the crystallization kinetic and defect state of the perovskite film and a high-quality perovskite film with larger grain size and lower defect density is obtained. Perovskite solar cell (PSC) with HaHc additive exhibit a power conversion efficiency (PCE) of 18.69% with less hysteresis, which is obviously higher than that of pristine cells (16.85%). On the other hand, the hydroxyl group in HaHc can form a strong hydrogen bond with iodide ion in perovskite film to impede the decomposition of the film when under thermal annealing or storing in air. As a result, the PSCs with HaHc additive show superior thermal and air stability to the pristine devices. These results indicate that the addition of HaHc in perovskite film can greatly improve the performance of PSCs as well as their thermal and air stability.