Memory encoding and retrieval are critical sub-processes of episodic memory. While the hippocampus is involved in both, less is known about its connectivity with the neocortex during memory processing in humans. This is partially due to variations in demands in common memory tasks, which inevitably recruit cognitive processes other than episodic memory. Conjunctive analysis of data from different tasks with the same core elements of encoding and retrieval can reduce the intrusion of patterns related to subsidiary perceptual and cognitive processing. Leveraging data from two large-scale functional resonance imaging studies with different episodic memory tasks (514 and 237 participants), we identified hippocampal-cortical networks active during memory tasks. Whole-brain functional connectivity maps were similar during resting state, encoding, and retrieval. Anterior and posterior hippocampus had distinct connectivity profiles, which were also stable across resting state and memory tasks. When contrasting encoding and retrieval connectivity, conjunctive encoding-related connectivity was sparse. During retrieval hippocampal connectivity was increased with areas known to be active during recollection, including medial prefrontal, inferior parietal, and parahippocampal cortices. This indicates that the stable functional connectivity of the hippocampus along its longitudinal axis is superposed by increased functional connectivity with the recollection network during retrieval, while auxiliary encoding connectivity likely reflects contextual factors.
Why education is linked to higher cognitive function in aging is fiercely debated. Leading theories propose that education reduces brain decline in aging, enhances tolerance to brain pathology, or that it does not affect cognitive decline but rather reflects higher early-life cognitive function. To test these theories, we analyzed 407.356 episodic memory scores from 170.795 participants >50 years, alongside 15.157 brain MRIs from 6.472 participants across 33 Western countries. More education was associated with better memory, larger intracranial volume and slightly larger volume of memory-sensitive brain regions. However, education did not protect against age-related decline or weakened effects of brain decline on cognition. The most parsimonious explanation for the results is that the associations reflect factors present early in life, including propensity of individuals with certain traits to pursue more education. While education has numerous benefits, the notion that it provides protection against cognitive or brain decline is not supported.
Performance on recall tests improves through childhood and adolescence, in part due to structural maturation of the medial temporal cortex. Although partly different processes support successful recall over shorter vs. longer intervals, recall is usually tested after less than an hour. The aim of the present study was to test whether there are unique developmental changes in recall performance using extended retention intervals, and whether these are related to structural maturation of sub-regions of the hippocampus. 650 children and adolescents from 4.1 to 24.8 years were assessed in total 962 times (mean interval ≈ 1.8 years). The California Verbal Learning Test (CVLT) and the Rey Complex Figure Test (CFT) were used. Recall was tested 30 min and ≈ 10 days after encoding. We found unique developmental effects on recall in the extended retention interval condition independently of 30 min recall performance. For CVLT, major improvements happened between 10 and 15 years. For CFT, improvement was linear and was accounted for by visuo-constructive abilities. The relationships did not show anterior-posterior hippocampal axis differences. In conclusion, performance on recall tests using extended retention intervals shows unique development, likely due to changes in encoding depth or efficacy, or improvements of long-term consolidation processes.
Abstract Systems consolidation of new experiences into lasting episodic memories involves hippocampal–neocortical interactions. Evidence of this process is already observed during early post-encoding rest periods, both as increased hippocampal coupling with task-relevant perceptual regions and reactivation of stimulus-specific patterns following intensive encoding tasks. We investigate the spatial and temporal characteristics of these hippocampally anchored post-encoding neocortical modulations. Eighty-nine adults participated in an experiment consisting of interleaved memory task- and resting-state periods. We observed increased post-encoding functional connectivity between hippocampus and individually localized neocortical regions responsive to stimuli encountered during memory encoding. Post-encoding modulations were manifested as a nearly system-wide upregulation in hippocampal coupling with all major functional networks. The configuration of these extensive modulations resembled hippocampal–neocortical interaction patterns estimated from active encoding operations, suggesting hippocampal post-encoding involvement exceeds perceptual aspects. Reinstatement of encoding patterns was not observed in resting-state scans collected 12 h later, nor when using other candidate seed regions. The similarity in hippocampal functional coupling between online memory encoding and offline post-encoding rest suggests reactivation in humans involves a spectrum of cognitive processes engaged during the experience of an event. There were no age effects, suggesting that upregulation of hippocampal–neocortical connectivity represents a general phenomenon seen across the adult lifespan.
Abstract Cortical asymmetry is a ubiquitous feature of brain organization that is subtly altered in some neurodevelopmental disorders, yet we lack knowledge of how its development proceeds across life in health. Achieving consensus on the precise cortical asymmetries in humans is necessary to uncover the genetic and later influences that shape them, such as age. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in 7 datasets and chart asymmetry trajectories longitudinally across life (4-89 years; observations = 3937; 70% longitudinal). We find replicable asymmetry interrelationships, heritability maps, and test asymmetry associations in large-scale data. Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in childhood and peaks in early adulthood. Areal asymmetry correlates phenotypically and genetically in specific regions, and is low-moderately heritable (max h 2 SNP ∼19%). In contrast, thickness asymmetry is globally interrelated across the cortex in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in population-level right-asymmetric regions (and vice versa), and exhibits low or absent heritability. We find less areal asymmetry in the most consistently lateralized region in humans associates with subtly lower cognitive ability, and confirm small handedness and sex effects. Results suggest areal asymmetry is developmentally stable and arises in early life through genetic but mainly subject-specific stochastic effects, whereas childhood developmental growth shapes thickness asymmetry and may lead to directional variability of global thickness lateralization in the population.
Abstract In neuroimaging research, tracking individuals over time is key to understanding the interplay between brain changes and genetic, environmental, or cognitive factors across the lifespan. Yet, the extent to which we can estimate the individual trajectories of brain change over time with precision remains uncertain. In this study, we estimated the reliability of structural brain change in cognitively healthy adults from multiple samples and assessed the influence of follow-up time and number of observations. Estimates of cross-sectional measurement error and brain change variance were obtained using the longitudinal FreeSurfer processing stream. Our findings showed, on average, modest longitudinal reliability with two years of follow-up. Increasing the follow-up time was associated with a substantial increase in longitudinal reliability while the impact of increasing the number of observations was comparatively minor. On average, 2-year follow-up studies require ≈2.7 and ≈4.0 times more individuals than designs with follow-ups of 4 and 6 years to achieve comparable statistical power. Subcortical volume exhibited higher longitudinal reliability compared to cortical area, thickness, and volume. The reliability estimates were comparable to those estimated from empirical data. The reliability estimates were affected by both the cohort’s age where younger adults had lower reliability of change, and the preprocessing pipeline where the FreeSurfer’s longitudinal stream was notably superior than the cross-sectional. Suboptimal reliability inflated sample size requirements and compromised the ability to distinguish individual trajectories of brain aging. This study underscores the importance of long-term follow-ups and the need to consider reliability in longitudinal neuroimaging research.
Abstract Episodic memory can be trained in both early and late adulthood, but there is considerable variation in cognitive improvement across individuals. Which brain characteristics make some individuals benefit more than others? We used a multimodal approach to investigate whether volumetric magnetic resonance imaging (MRI) and resting‐state functional MRI characteristics of the cortex and hippocampus, brain regions involved in episodic‐memory function, were predictive of cognitive improvement after memory training. We hypothesized that these brain characteristics would differentially predict memory improvement in young and older adults, given the vulnerability of cortical regions as well as the hippocampus to healthy aging. Following structural and resting‐state activity magnetic resonance scans, 50 young and 76 older participants completed 10 weeks of strategic episodic‐memory training. Both age groups improved their memory performance, but the young adults more so than the older. Vertex‐wise analyses of cortical volume showed no significant relation to memory benefit. When analyzing the two age groups separately, hippocampal volume was predictive of memory improvement in the group of older participants only. In this age group, the lower resting‐state activity of the hippocampus was also predictive of memory improvement. Both volumetric and resting‐state characteristics of the hippocampus explained unique variance of the improvement in the older participants suggesting that a multimodal imaging approach is valuable for the understanding of mechanisms underlying memory plasticity in aging.